Computational Models of Sprouting Angiogenesis and Cell Migration: Towards Multiscale Mechanochemical Models of Angiogenesis
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 1, pp. 108-141.

Voir la notice de l'article provenant de la source EDP Sciences

Angiogenesis, the formation of new bloods vessels from the existing vasculature, is a process that is essential during development and regeneration of tissues, and that plays a major role in diseases like cancer. Computational models have been designed to obtain a better understanding of the mechanisms behind angiogenesis. In this paper we review computational models of sprouting angiogenesis. These models can be subdivided into three categories: models that mainly focus on tip cell migration, models that make a distinction between the role of tip cells and stalk cells, and models that consider cell shape dynamics. Many models combine discrete modeling of individual cells with continuous modeling of the extracellular matrix (ECM) and diffusing solutes, in this way resulting in a hybrid model. We discuss their merits in unraveling the role of certain factors for vascular network formation, such as the role of (chemotactic, haptotactic, contact) guidance cues in the dynamics and morphology of vascular network formation, and the role of cell-cell interactions that govern tip cell selection and phenotypic changes in general. At the same time, we identify a need for the inclusion of cell mechanical principles in models of angiogenesis, in particular for the description of cell migration, cell-matrix and cell-cell interaction, as the generation of cellular forces is key to cell migration. To further underline this we review models of single cell migration that incorporate such principles, which could be the starting point for formulating novel models of angiogenesis that respect the fundamental laws of classical mechanics at the cell level. As the generation of cellular forces is strongly mediated by pro-angiogenic signals, such models must couple cell mechanical principles to molecular signaling into multiscale mechanochemical models of angiogenesis. Finally, a tight coupling between models and experiments will be required to facilitate model improvements and the generation of novel insights on the regulation of angiogenesis.
DOI : 10.1051/mmnp/201510106

T.A.M. Heck 1, 2 ; M. M. Vaeyens 1, 2 ; H. Van Oosterwyck 2, 3

1 Joint first authors.
2 Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
3 Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Leuven, Belgium
@article{MMNP_2015_10_1_a6,
     author = {T.A.M. Heck and M. M. Vaeyens and H. Van Oosterwyck},
     title = {Computational {Models} of {Sprouting} {Angiogenesis} and {Cell} {Migration:} {Towards} {Multiscale} {Mechanochemical} {Models} of {Angiogenesis}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {108--141},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2015},
     doi = {10.1051/mmnp/201510106},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510106/}
}
TY  - JOUR
AU  - T.A.M. Heck
AU  - M. M. Vaeyens
AU  - H. Van Oosterwyck
TI  - Computational Models of Sprouting Angiogenesis and Cell Migration: Towards Multiscale Mechanochemical Models of Angiogenesis
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 108
EP  - 141
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510106/
DO  - 10.1051/mmnp/201510106
LA  - en
ID  - MMNP_2015_10_1_a6
ER  - 
%0 Journal Article
%A T.A.M. Heck
%A M. M. Vaeyens
%A H. Van Oosterwyck
%T Computational Models of Sprouting Angiogenesis and Cell Migration: Towards Multiscale Mechanochemical Models of Angiogenesis
%J Mathematical modelling of natural phenomena
%D 2015
%P 108-141
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510106/
%R 10.1051/mmnp/201510106
%G en
%F MMNP_2015_10_1_a6
T.A.M. Heck; M. M. Vaeyens; H. Van Oosterwyck. Computational Models of Sprouting Angiogenesis and Cell Migration: Towards Multiscale Mechanochemical Models of Angiogenesis. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 1, pp. 108-141. doi : 10.1051/mmnp/201510106. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510106/

[1] W. Alt, R. T. Tranquillo J. Biol. Syst. 905 916 1995

[2] A. R. Anderson, M. A. Chaplain Bull. Math. Biol. 857 900 1998

[3] S. Arima, K. Nishiyama, T. Ko, Y. Arima, Y. Hakozaki, K. Sugihara, H. Koseki, Y. Uchijima, Y. Kurihara, H. Kurihara Development 4763 4776 2011

[4] S. Barreto, C. H. Clausen, C. M. Perrault, D.A. Fletcher, D. Lacroix Biomaterials 6119 6126 2013

[5] A. L. Bauer, T. L. Jackson, Y. Jiang Biophys. J. 3105 3121 2007

[6] K. J. Bayless, G. A. Johnson J. Vasc. Res. 369 385 2011

[7] K. Bentley, C.A. Franco, A. Philippides, R. Blanco, M. Dierkes, V. Gebala, F. Stanchi, M. Jones, I.M. Aspalter, G. Cagna, S. Weström, L. Claesson-Welsh, D. Vestweber, H. Gerhardt Nat. Cell Biol. 309 321 2014

[8] K. Bentley, H. Gerhardt, P. A. Bates J. Theor. Biol. 25 36 2008

[9] K. Bentley, M. Jones, B. Cruys Exp. Cell Res. 1240 1246 2013

[10] K. Bentley, G. Mariggi, H. Gerhardt, P. A. Bates PLoS Comput. Biol. e1000549 2009

[11] R. Blanco, H. Gerhardt Cold Spring Harb. Perspect. Med. a006569 2013

[12] S. Boas, M. Palm, P. Koolwijk, R. Merks. Computational modeling of angiogenesis: towards a multi-scale understanding of cell-cell and cell-matrix interactions. In C. A. Reinhart-King, editor, Mech. Chem. Signal. Angiogenes. SE - 8, volume 12 of Studies in Mechanobiology, Tissue Engineering and Biomaterials, pages 161–183. Springer Berlin Heidelberg, 2013.

[13] C. P. Brangwynne, F. C. Mackintosh, S. Kumar, N. A. Geisse, J. Talbot, L. Mahadevan, K. K. Parker, D. E. Ingber, D. A. Weitz J. Cell Biol. 733 741 2006

[14] J. J. Bravo-Cordero, M. A. O. Magalhaes, R. J. Eddy, L. Hodgson, J. Condeelis Nat. Rev. Mol. Cell Biol. 405 415 2013

[15] B. A. Bryan, P. A. D’Amore Cell. Mol. Life Sci. 2053 2065 2007

[16] B. A. Camley, Y. Zhao, B. Li, H. Levine, W.-J. Rappel Phys. Rev. Lett. 158102 2013

[17] L. Cardamone, A. Laio, V. Torre, R. Shahapure, A. Desimone Proc. Natl. Acad. Sci. 13978 13983 2011

[18] A. Carlier, L. Geris, K. Bentley, G. Carmeliet, P. Carmeliet, H. Van Oosterwyck PLoS Comput. Biol. e1002724 2012

[19] P. Carmeliet, F. De Smet, S. Loges, M. Mazzone Nat. Rev. Clin. Oncol. 315 326 2009

[20] P. Carmeliet, R. K. Jain Nature 298 307 2011

[21] J. C. Chappell, D. M. Wiley, V. L. Bautch Semin. Cell Dev. Biol. 1005 1011 2011

[22] S. Checa, P. J. Prendergast Ann. Biomed. Eng. 129 145 2009

[23] C. S. Chen J. Cell Sci. 3285 3292 2008

[24] Q. Chi, T. Yin, H. Gregersen, X. Deng, Y. Fan, J. Zhao, D. Liao, G. Wang J. R. Soc. Interface 20131072 2014

[25] C. L. E. Clainche, M.-F. Carlier Physiol. Rev. 489 513 2008

[26] V. L. Cross, Y. Zheng, N. Won Choi, S. S. Verbridge, B. A. Sutermaster, L. J. Bonassar, C. Fischbach, A. D. Stroock Biomaterials 8596 8607 2010

[27] G. Danuser, J. Allard, A. Mogilner Annu. Rev. Cell Dev. Biol. 501 528 2013

[28] A. Das, D. Lauffenburger, H. Asada, R. D. Kamm Philos. Trans. R. Soc. A 2937 2960 2010

[29] J. T. Daub, R. M. H. Merks Bull. Math. Biol. 1377 1399 2013

[30] G. E. Davis, D. R. Senger Circ. Res. 1093 1107 2005

[31] A. T. Dawes, L. Edelstein-Keshet Biophys. J. 744 768 2007

[32] F. De Smet, I. Segura, K. De Bock, P. J. Hohensinner, P. Carmeliet Arterioscler. Thromb. Vasc. Biol. 639 649 2009

[33] E. Dejana Nat. Rev. Mol. Cell Biol. 261 270 2004

[34] E. Dejana, E. Tournier-Lasserve, B. M. Weinstein Dev. Cell 209 221 2009

[35] J. A. Ditlev, N. M. Vacanti, I. L. Novak, L. M. Loew Biophys. J. 3529 3542 2009

[36] R. Dominguez Curr. Opin. Struct. Biol. 217 225 2010

[37] L. T. Edgar, S. C. Sibole, C. J. Underwood, J. E. Guilkey, J. A. Weiss Comput. Methods Biomech. Biomed. Engin. 790 801 2013

[38] L. T. Edgar, C. J. Underwood, J. E. Guilkey, J. B. Hoying, J. A. Weiss PLoS One e85178 2014

[39] H. M. Eilken, R. H. Adams Curr. Opin. Cell Biol. 617 625 2010

[40] R. S. Fischer, M. Gardel, X. Ma, R. S. Adelstein, C. M. Waterman Curr. Biol. 260 265 2009

[41] C. Franco, T. Tzvetkova-Chevolleau, A. Stéphanou Math. Model. Nat. Phenom. 56 83 2010

[42] M. L. Gardel, I. C. Schneider, Y. Aratyn-Schaus, C. M. Waterman Annu. Rev. Cell Dev. Biol. 315 333 2010

[43] I. Geudens, H. Gerhardt Development 4569 4583 2011

[44] R. D. Goldman, M. M. Cleland, S. N. P. Murthy, S. Mahammad, E. R. Kuczmarski J. Struct. Biol. 14 23 2012

[45] S. J. Grainger, A. J. Putnam. Mechanical and chemical signaling in angiogenesis. In C. A. Reinhart-King, editor, Mech. Chem. Signal. Angiogenes., volume 12 of Studies in Mechanobiology, Tissue Engineering and Biomaterials, pages 185–209. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[46] F. Graner, J. A. Glazier Phys. Rev. Lett. 2013 2016 1992

[47] H. P. Grimm, A. B. Verkhovsky, A. Mogilner, J.-J. Meister Eur. Biophys. J. 563 577 2003

[48] S. J. Heasman, A. J. Ridley Nat. Rev. Mol. Cell Biol. 690 701 2008

[49] M. Herant, M. Dembo J. Comput. Biol. 1639 1677 2010

[50] M. Herant, M. Dembo Biophys. J. 1408 1417 2010

[51] H. Herrmann, S. V. Strelkov, P. Burkhard, U. Aebi J. Clin. Invest. 1772 1783 2009

[52] C. Hetheridge, A. N. Scott, R. K. Swain, J. W. Copeland, H. N. Higgs, R. Bicknell, H. Mellor J. Cell Sci. 1420 1428 2012

[53] A. C. Hielscher, S. Gerecht Cancer Res. 6089 6096 2012

[54] B. D. Hoffman, C. Grashoff, M. A. Schwartz Nature 316 323 2011

[55] W. R. Holmes, L. Edelstein-Keshet PLoS Comput. Biol. e1002793 2012

[56] P. Hotulainen, P. Lappalainen J. Cell Biol. 383 394 2006

[57] H. Hutchings, N. Ortega, J. Plouët FASEB J. 1520 1522 2003

[58] S. Huveneers, E. H. J. Danen J. Cell Sci. 1059 1069 2009

[59] D. E. Ingber Circ. Res. 877 887 2002

[60] D. E. Ingber Prog. Biophys. Mol. Biol. 163 179 2008

[61] T. Jackson, X. Zheng Bull. Math. Biol. 830 868 2010

[62] C. R. Jacobs, H. Huang, R. Y. Kwon. Introduction to cell mechanics and mechanobiology. Garland Science, 2012.

[63] H. V. Jain, T. L. Jackson Front. Oncol. 102 2013

[64] L. Jakobsson, C. A. Franco, K. Bentley, R. T. Collins, B. Ponsioen, I. M. Aspalter, I. Rosewell, M. Busse, G. Thurston, A. Medvinsky, S. Schulte-Merker, H. Gerhardt Nat. Cell Biol. 943 953 2010

[65] A. Jilkine, A. F. M. Marée, L. Edelstein-Keshet Bull. Math. Biol. 1943 1978 2007

[66] E. D. Karagiannis, A. S. Popel J. Theor. Biol. 124 145 2006

[67] M.-C. Kim, C. Kim, L. Wood, D. Neal, R. D. Kamm, H. H. Asada Integr. Biol. 1386 1397 2012

[68] M.-C. Kim, D. M. Neal, R. D. Kamm, H. H. Asada PLoS Comput. Biol. e1002926 2013

[69] A. Kishino, T. Yanagida Nature 74 76 1988

[70] E. Kniazeva, A. J. Putnam Am. J. Physiol. - Cell Physiol. C179 C187 2009

[71] A. Köhn-Luque, W. De Back, J. Starruss, A. Mattiotti, A. Deutsch, J. M. Pérez-Pomares, M. A. Herrero PLoS One 2011

[72] T. Korff, H. G. Augustin J. Cell Sci. 3249 3258 1999

[73] L. Lamalice, B. F. Le, J. Huot Circ. Res. 782 794 2007

[74] T. Lämmermann, M. Sixt Curr. Opin. Cell Biol. 636 644 2009

[75] P.-F. Lee, Y. Bai, R. L. Smith, K. J. Bayless, A. T. Yeh Acta Biomater. 7178 7190 2013

[76] C. A. Lemmon, L. H. Romer Biophys. journal2 L78 L80 2010

[77] G. Lemon, D. Howard, F. R. A. J. Rose, J. R. King BioSystems 372 83 2011

[78] G. Liu, A. A. Qutub, P. Vempati, F. Mac Gabhann, A. S. Popel Theor. Biol. Med. Model. 6 2011

[79] A. W. Mahoney, B. G. Smith, N. S. Flann, G. J. Podgorski. Discovering novel cancer therapies: A computational modeling and search approach. 2008 IEEE Symp. Comput. Intell. Bioinforma. Comput. Biol., pages 233–240, Sept. 2008.

[80] A. Mammoto, K. M. Connor, T. Mammoto, C. W. Yung, D. Huh, C. M. Aderman, G. Mostoslavsky, L. E. H. Smith, D. E. Ingber Nature 1103 1108 2009

[81] D. Manoussaki, S. R. Lubkin, R. B. Vernon, J. D. Murray Acta Biotheor. 271 282 1996

[82] A. F. M. Marée, V. A. Grieneisen, L. Edelstein-Keshet PLoS Comput. Biol. e1002402 2012

[83] A. F. M. Marée, A. Jilkine, A. Dawes, V. A. Grieneisen, L. Edelstein-Keshet Bull. Math. Biol. 1169 1211 2006

[84] B. N. Mason, A. Starchenko, R. M. Williams, L. J. Bonassar, C. A. Reinhart-King Acta Biomater. 4635 4644 2013

[85] R. M. H. Merks, S. V. Brodsky, M. S. Goligorksy, S. A. Newman, J. A. Glazier Dev. Biol. 44 54 2006

[86] F. Milde, M. Bergdorf, P. Koumoutsakos Biophys. J. 3146 3160 2008

[87] A. Mogilner, L. Edelstein-Keshet Biophys. J. 1237 1258 2002

[88] J. D. Murray. Mathematical biology II: spatial models and biomedical applications. Springer, Berlin, 3 edition, 2003.

[89] P. Naumanen, P. Lappalainen, P. Hotulainen J. Microsc. 446 454 2008

[90] S. Niland, J. A. Eble. Integrin-mediated cell-matrix interaction in physiological and pathological blood vessel formation. J. Oncol., 2012:125278, Jan. 2012.

[91] P. Nyberg, L. Xie, R. Kalluri Cancer Res. 3967 3979 2005

[92] G. Odell, G. Oster, P. Alberch, B. Burnside Dev. Biol. 446 462 1981

[93] T. Odenthal, B. Smeets, P. Van Liedekerke, E. Tijskens, H. Van Oosterwyck, H. Ramon PLoS Comput. Biol. e1003267 2013

[94] B. G. F. Oster, J. D. Murray, A. K. Harris J. Embryol. Exp. Morphol. 83 125 1983

[95] F. Otsuka, A. V. Finn, S. K. Yazdani, M. Nakano, F. D. Kolodgie, R. Virmani Nat. Rev. Cardiol. 439 453 2012

[96] M. R. Owen, T. Alarcón, P. K. Maini, H. M. Byrne J. Math. Biol. 689 721 2009

[97] V. Peiffer, A. Gerisch, D. Vandepitte, H. Van Oosterwyck, L. Geris Biomech. Model. Mechanobiol. 383 395 2011

[98] S. M. Peirce, F. Mac Gabhann, V. L. Bautch Curr. Opin. Hematol. 184 191 2012

[99] R. J. Petrie, N. Gavara, R. S. Chadwick, K. M. Yamada J. Cell Biol. 439 455 2012

[100] M. J. Plank, B. D. Sleeman Math. Med. Biol. 135 181 2003

[101] M. J. Plank, B. D. Sleeman Bull. Math. Biol. 1785 1819 2004

[102] T. D. Pollard Nature 741 745 2003

[103] P. P. Provenzano, P. J. Keely J. Cell Sci. 1195 1205 2011

[104] A. A. Qutub, F. Mac Gabhann, E. D. Karagiannis, P. Vempati, A. S. Popel IEEE Eng. Med. Biol. Mag. 14 31 2009

[105] A. A. Qutub, A. S. Popel BMC Syst. Biol. 13 2009

[106] R. Rangarajan, M. H. Zaman Cell Adh. Migr. 106 109 2008

[107] B. Rubinstein, M. F. Fournier, K. Jacobson, A. B. Verkhovsky, A. Mogilner Biophys. J. 1853 1863 2009

[108] B. Rubinstein, K. Jacobson, A. Mogilner Multiscale Model. Simul. 413 439 2005

[109] J. E. Rundhaug J. Cell. Mol. Med. 267 285 2005

[110] D. R. Senger, C. A. Perruzzi, M. Streit, V. E. Koteliansky, A. R. De Fougerolles, M. Detmar The α1β1 and α2β1 Integrins Provide Critical Support for Vascular Endothelial Growth Factor Signaling, Endothelial Cell Migration, and Tumor Angiogenesis Am. J. Pathol. 195 204 2002

[111] G. Serini, L. Napione, F. Bussolino Curr. Opin. Hematol. 235 242 2008

[112] D. Shao, H. Levine, W.-J. Rappel Proc. Natl. Acad. Sci. U. S. A. 6851 6856 2012

[113] S. J. Shattil, C. Kim, M. H. Ginsberg Nat. Rev. Mol. Cell Biol. 288 300 2010

[114] A. Shirinifard, J. S. Gens, B. L. Zaitlen, N. J. Poplawski, M. Swat, J. A. Glazier PLoS One 2009

[115] Y.-T. Shiu, J. A. Weiss, J. B. Hoying, M. N. Iwamoto, I. S. Joung, C. T. Quam Crit. Rev. Biomed. Eng. 431 510 2005

[116] R. Silva, G. D’Amico, K. M. Hodivala-Dilke, L. E. Reynolds Arterioscler. Thromb. Vasc. Biol. 1703 1713 2008

[117] S.-T. Sit, E. Manser J. Cell Sci. 679 683 2011

[118] M. Sixt J. Cell Biol. 347 349 2012

[119] B. Sleeman, I. Wallis Math. Comput. Model. 339 358 2002

[120] P. R. Somanath, A. Ciocea, T. V. Byzova Cell Biochem. Biophys. 53 64 2009

[121] M. O. Stefanini, A. A. Qutub, F. Mac Gabhann, A. S. Popel Math. Med. Biol. 85 94 2012

[122] A. Stéphanou, E. Mylona, M. Chaplain, P. Tracqui J. Theor. Biol. 701 716 2008

[123] M. W. Stewart Curr. Drug ther. 80 89 2012

[124] C. L. Stokes, D. A. Lauffenburger, S. K. Williams J. Cell Sci. 419 430 1991

[125] S.-C. Su, E. A. Mendoza, H.-I. Kwak, K. J. Bayless Am. J. Physiol. C1215 C1229 2008

[126] A. Szabó, A. Czirók Math. Model. Nat. Phenom. 106 122 2010

[127] Y. L. Taber, Y. Shi, L. Yang, P. Bayly J. Mech. Mater. Struct. 569 589 2011

[128] M. Théry, M. Bornens Curr. Opin. Cell Biol. 648 657 2006

[129] S. Tong, F. Yuan Microvasc. Res. 14 27 2001

[130] R. D.M. Travasso, E. Corvera Poiré, M. Castro, J. C. Rodríguez-Manzaneque, J. C. Rodrguez-Manzaneque, A. Hernández-Machado PLoS One e19989 2011

[131] R. Van Der Meel, M. H. Symons, R. Kudernatsch, R. J. Kok, R. M. Schiffelers, G. Storm, W. M. Gallagher, A. T. Byrne Drug Discov. Today 219 228 2011

[132] V. W. M. Van Hinsbergh, P. Koolwijk Cardiovasc. Res. 203 212 2008

[133] R. F. M. Van Oers, E. G. Rens, D. J. Lavalley, C. A. Reinhart-King, R. M. H. Merks PLoS Comput. Biol. e1003774 2014

[134] H. Van Oosterwyck. Computational mechanobiology: may the force be with you. J. Math. Biol., pages Epub ahead of print, DOI 10.1007/s00285–014–0795–6, May 2014.

[135] B. Vanderlei, J. J. Feng, L. Edelstein-Keshet Multiscale Model. Simul. 1420 1443 2010

[136] M. Vicente-Manzanares, C. K. Choi, A. R. Horwitz J. Cell Sci. 199 206 2009

[137] M. Vicente-Manzanares, X. Ma, R. S. Adelstein, A. R. Horwitz Nat. Rev. Mol. Cell Biol. 778 790 2009

[138] M. Vicente-Manzanares, D. J. Webb, A. R. Horwitz J. Cell Sci. 4917 4919 2005

[139] R. H. Wade, A. A. Hyman Curr. Opin. Cell Biol. 12 17 1997

[140] N. Wang, J. D. Tytell, D. E. Ingber Nat. Rev. Mol. Cell Biol. 75 82 2009

[141] E. S. Welf, J. M. Haugh Wiley Interdiscip. Rev. Syst. Biol. Medicine 231 240 2011

[142] E. S. Welf, H. E. Johnson, J. M. Haugh Mol. Biol. Cell 3945 3955 2013

[143] B. Wojciak-Stothard, A. J. Ridley Vascul. Pharmacol. 187 199 2002

[144] C. W. Wolgemuth, J. Stajic, A. Mogilner Biophys. J. 545 553 2011

[145] C. W. Wolgemuth, M. Zajac J. Comput. Phys. 7287 7308 2010

[146] L. Wood, R. Kamm, H. Asada Int. J. Rob. Res. 659 677 2011

[147] L. Yan, M. A. Moses, S. Huang, D. E. Ingber J. Cell Sci. 3979 3987 2000

[148] A. L. Zajac, D. E. Discher Curr. Opin. Cell Biol. 609 615 2008

[149] G. Zeng, S. M. Taylor, J. R. Mccolm, N. C. Kappas, J. B. Kearney, L. H. Williams, M. E. Hartnett, V. L. Bautch Blood 1345 1352 2007

[150] F. Ziebert, I. S. Aranson PLoS One e64511 2013

[151] F. Ziebert, S. Swaminathan, I. S. Aranson J. R. Soc. Interface 1084 1092 2012

Cité par Sources :