Hybrid Models in Erythropoiesis and in Megakaryopoiesis
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 1, pp. 48-63.

Voir la notice de l'article provenant de la source EDP Sciences

Hematopoiesis is a complex process which results in production of erythrocytes, platelets and white blood cells from pluripotent stem cells located in the bone marrow. We will present hybrid models of hematopoiesis and will use them to study the lineage choice of bipotent erythro-megakaryocytic progenitors and erythroid lineage of hematopoiesis. Biological cells will be considered as individual objects, intracellular regulatory networks will be described with ordinary differential equations and biochemical substances in the extracellular matrix with partial differential equations.
DOI : 10.1051/mmnp/201510103

N. Eymard 1 ; P. Kurbatova 2

1 Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
2 Faculté de Médecine Laennec, UMR 5558 CNRS, University Lyon 1, 69003 Lyon, France
@article{MMNP_2015_10_1_a3,
     author = {N. Eymard and P. Kurbatova},
     title = {Hybrid {Models} in {Erythropoiesis} and in {Megakaryopoiesis}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {48--63},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2015},
     doi = {10.1051/mmnp/201510103},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510103/}
}
TY  - JOUR
AU  - N. Eymard
AU  - P. Kurbatova
TI  - Hybrid Models in Erythropoiesis and in Megakaryopoiesis
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 48
EP  - 63
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510103/
DO  - 10.1051/mmnp/201510103
LA  - en
ID  - MMNP_2015_10_1_a3
ER  - 
%0 Journal Article
%A N. Eymard
%A P. Kurbatova
%T Hybrid Models in Erythropoiesis and in Megakaryopoiesis
%J Mathematical modelling of natural phenomena
%D 2015
%P 48-63
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510103/
%R 10.1051/mmnp/201510103
%G en
%F MMNP_2015_10_1_a3
N. Eymard; P. Kurbatova. Hybrid Models in Erythropoiesis and in Megakaryopoiesis. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 1, pp. 48-63. doi : 10.1051/mmnp/201510103. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510103/

[1] A.S. Ackleh, K. Deng, K. Ito, J. Thibodeaux Math. Bios. 2006 21 48

[2] E. Afenya, S. Mundle Math. Model. Nat. Phenom. 2010 15 27

[3] R. Apostu, M.C. Mackey J. Theor. Biol. 2008 297 316

[4] S. Balea, A. Halanay, D. Jardan, M. Neamtu Math. Model. Nat. Phenom. 2014 108 132

[5] S. Bernard, J. Bélair, M.C. Mackey J. Theor. Biol. 2003 283 298

[6] N. Bessonov, L. Pujo-Menjouet, V. Volpert Math. Model. Nat. Phenom. 2006 81 103

[7] N. Bessonov, P. Kurbatova, V. Volpert. Particle dynamics modelling of cell populations. Proc. Conf. JANO, Mohhamadia, 2008. Math. Model. Nat. Phenom., 5 (2010), 7, 42–47.

[8] N. Bessonov, F. Crauste, I. Demin, V. Volpert Math. Model. Nat. Phenom. 2009 210 232

[9] N. Bessonov, F. Crauste, S. Fischer, P. Kurbatova, V. Volpert Math. Model. Nat. Phenom. 2011 2 12

[10] N. Bessonov, I. Demin, P. Kurbatova, L. Pujo-Menjouet, V. Volpert. Multi-agent systems and blood cell formation. In: Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies, F. Alkhateeb, E. Al Maghayreh, I. A. Doush, Editors, (2011), 395–424.

[11] N. Bessonov, N. Eymard, P. Kurbatova, V. Volpert Applied Mathematics Letters 2012 1217 1221

[12] F. Bouilloux, G. Juban, N. Cohet, D. Buet, B. Guyot, W. Vainchenker, F. Louache, F. Morle. EKLF restricts megakaryocytic differentiation at the benefit of erythrocytic differentiation. Blood, 1 112 (3) (2008), 576-84.

[13] A.B. Cantor, S.H. Orkin Oncogene 2002 3368 3376

[14] J.A. Chasis, N. Mohandas. Erythroblastic islands: niches for erythropoiesis. Blood, 112 (2008).

[15] C. Colijn, M.C. Mackey J. Theor. Biol. 2005 117 132

[16] C. Colijn, M.C. Mackey J. Theor. Biol. 2005 133 146

[17] F. Crauste, I. Demin, O. Gandrillon, V. Volpert J. Theor. Biology 2010 303 316

[18] F. Crauste, L. Pujo-Menjouet, S. Génieys, C. Molina, O. Gandrillon J. Theor. Biology 2008 322 338

[19] S. Dazy, F. Damiola, N. Parisey, H. Beug, O. Gandrillon Oncogene 2003 9205 9216

[20] I. Demin, F. Crauste, O. Gandrillon, V. Volpert Journal of Biological Dynamics 2010 59 70

[21] C. Duff, K. Smith-Miles, L. Lopes, T. Tian J. Math. Biol. 2012 449 468

[22] J. Eller, I. Gyori, M. Zollei, F. Krizsa Comput. Math. Appli 1987 841 848

[23] N. Eymard, N. Bessonov, O. Gandrillon, M.J. Koury, V. Volpert, The role of spatial organisation of cells in erythropoiesis. Journal of Mathematical Biology (2014).

[24] S. Fischer, P. Kurbatova, N. Bessonov, O. Gandrillon, V. Volpert, F. Crauste Journal of Theoretical Biology 2012 92 106

[25] P. Frontelo, D. Manwani, M. Galdass, H. Karsunky, F. Lohmann, P.G. Gallagher, J.J. Bieker Blood 2007 3871 3880

[26] A. Golubev J. Theor. Biol. 2010 341 354

[27] A. Halanay Math. Model. Nat. Phenom. 2012 235 244

[28] A. Halanay, D. Candea, I. R. Radulescu Math. Model. Nat. Phenom. 2014 58 78

[29] M. J. Koury, M.C. Bondurant Science 1990 378 381

[30] P. Kurbatova, S. Bernard, N. Bessonov, F. Crauste, I. Demin, C. Dumontet, S. Fischer, V. Volpert. Hybrid Model of Erythropoiesis and Leukemia Treatment with Cytosine Arabinoside. 2011, SIAM J. Appl. Math, Volume 71, Issue 6, (2011) 2246–2268.

[31] P. Kurbatova, N. Eymard, V. Volpert. Hybrid model of erythropoiesis. Acta Biotheoretica, Volume 61, Issue 3 (2013), 305-315.

[32] F. Lohmann, J. J. Bieker Blood Cells, Molecules, and Diseases 2007 120 191

[33] M.C. Mackey Blood 1978 941 956

[34] M.C Mackey. Dynamic hematological disorders of stem cell origin. In: G. Vassileva-Popova and E. V. Jensen, Editors. Biophysical and Biochemical Information Transfer in Recognition, Plenum Press, New York, (1979), 373–409.

[35] M.C. Mackey, R. Rudnicki J. Math. Biol. 1999 195 219

[36] J.M. Mahaffy, J. Belair, M.C. Mackey J. Theor. Biol. 1998 135 146

[37] R. De Maria, U. Testa, L. Luchetti, A. Zeuner, G. Stassi, E. Pelosi, R. Riccioni, N. Felli, P. Samoggia, C. Peschle Blood 1999 796 803

[38] J.M. Osborne, A. Walter, S.K. Kershaw, G.R. Mirams, A.G. Fletcher, P. Pathmanathan, D. Gavaghan, O.E. Jensen, P.K. Maini, H.M. Byrne Phil. Trans. R. Soc. A 2010 5013 5028

[39] H. Ozbay, C. Bonnet, H. Benjelloun, J. Clairambault Math. Model. Nat. Phenom. 2012 203 234

[40] A.A. Patel, E.T. Gawlinsky, S.K. Lemieux, R.A. Gatenby J. Theor. Biol. 2001 315 331

[41] I. Roeder Curr. Opin. Hematol. 2006 222 228

[42] C. Rubiolo, D. Piazzolla, K. Meissl, H. Beug, J.C. Huber, A. Kolbus, M. Baccarini Blood 2006 152 159

[43] M. Santillan, J.M. Mahaffy, J. Belair, M.C. Mackey J. Theor. Biol. 2000 585 603

[44] J. Starck, M. Weiss-Gayet, C. Gonnet, B. Guyot, J.M. Vicat, F. Morlé Blood. 2010 4795 805

[45] T. Stiehl, A. Marciniak-Czochra Math. Model. Nat. Phenom. 2012 166 202

[46] V. Volpert. Elliptic partial differential equations. Volume 2. Reaction-diffusion equations. Birkhäuser, 2014.

[47] H.E. Wichmann, M.D. Gerhardts, H. Spechtmeyer, R. Gross Cell Tissue Kinet. 1979 551 567

[48] H.E. Wichmann, M. Loeffler. Mathematical Modeling of Cell Proliferation. Boca Raton, FL, CRC, 1985.

[49] H. Wulff, H.E. Wichmann, M. Loeffler, K. Pantel Cell Tissue Kinet. 1989 51 61

[50] H.E. Wichmann, M. Loeffler, K. Pantel, H. Wulff Cell Tissue Kinet. 1989 31 49

[51] M. Yamamoto, S. Takahashi, K. Onodera, Y. Muraosa, J. D. Engel Genes Cells. 1997 107 115

Cité par Sources :