Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2015_10_6_a9, author = {G. Zhao and S. Ruan}, title = {The {Decay} {Rates} of {Traveling} {Waves} and {Spectral} {Analysis} for a {Class} of {Nonlocal} {Evolution} {Equations}}, journal = {Mathematical modelling of natural phenomena}, pages = {142--162}, publisher = {mathdoc}, volume = {10}, number = {6}, year = {2015}, doi = {10.1051/mmnp/20150610}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20150610/} }
TY - JOUR AU - G. Zhao AU - S. Ruan TI - The Decay Rates of Traveling Waves and Spectral Analysis for a Class of Nonlocal Evolution Equations JO - Mathematical modelling of natural phenomena PY - 2015 SP - 142 EP - 162 VL - 10 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20150610/ DO - 10.1051/mmnp/20150610 LA - en ID - MMNP_2015_10_6_a9 ER -
%0 Journal Article %A G. Zhao %A S. Ruan %T The Decay Rates of Traveling Waves and Spectral Analysis for a Class of Nonlocal Evolution Equations %J Mathematical modelling of natural phenomena %D 2015 %P 142-162 %V 10 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20150610/ %R 10.1051/mmnp/20150610 %G en %F MMNP_2015_10_6_a9
G. Zhao; S. Ruan. The Decay Rates of Traveling Waves and Spectral Analysis for a Class of Nonlocal Evolution Equations. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 6, pp. 142-162. doi : 10.1051/mmnp/20150610. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20150610/
[1] SIAM Rev. 1976 620 709
[2] F. Andreu, J. M. Mazón, J. D. Rossi, J. Toledo, Nonlocal Diffusion Problems, Math. Surveys Monogr., Amer. Math. Soc., Providence, RI, 2010.
[3] Math. Model. Nat. Phenom. 2008 1 27
, ,[4] Discrete Contin. Dynam. Syst. Ser. B. 2010 537 557
, , ,[5] N. Apreutesei and V. Volpert, Properness and topological degree for nonlocal reaction-diffusion operators, Abstract Appl. Anal. (2011), 1-21.
[6] Intl. Electron. J. Pure Appl. Math. 2012 53 67
,[7] Topol. Methods Nonlinear Anal. 2014 215 229
,[8] D. G. Aronson, The asymptotic speed of propagation of a simple epidemic, in “Nonlinear Diffusion”, eds. by W. E. Fitzgibbon and H. F. Walker, Research Notes in Math. 14, Pitman, London, 1977, pp. 1-23.
[9] J. Stat. Phys. 1999 1119 1139
,[10] SIAM J. Math. Anal. 2006 116 126
,[11] Arch. Rat. Mech. Anal. 1997 105 136
, , ,[12] Nonlinear Anal. 2006 2251 2278
, ,[13] J. Math. Anal. Appl. 2007 428 440
,[14] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.
[15] Adv. Differential Equations 1997 125 160
[16] Appl. Anal. 1997 235 253
, ,[17] Proc. Roy. Soc. Edinburgh 1994 1013 1022
, , ,[18] T. Kato, Perturbation Theory for Linear Operators, Springer Verlag, New York, 1976.
[19] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.
[20] J. Dynam. Differential Equations 2001 147 183
[21] J. Dynam. Differential Equations 2005 523 572
,[22] J. Dynam. Differential Equations 1999 1 48
[23] J. Dynam. Differential Equations 1999 49 127
[24] M. Miklavcic, Applied Functional Analysis and Partial Differential Equations, World Scientific, Singapore, 1998.
[25] Arch. Rat. Mech. Anal. 1967 105 136
[26] S. Ruan, Spatial-temporal dynamics in nonlocal epidemiological models, in “Mathematics for Life Science and Medicine”, Vol. 2, Y. Takeuchi, K. Sato and Y. Iwasa (eds.), Springer-Verlag, New York, 2007, pp. 97-122.
[27] J. Reine Angew. Math. 1980 54 70
[28] Discrete Contin. Dynam. Syst. 1998 73 90
[29] A. I. Volpert, Vi. A. Volpert and Vl. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translated from Russian by J. F. Heyda, Transl. Math. Monogr., Vol. 140, Amer. Math. Soc., Providence, 1994.
[30] SIAM J. Math. Anal. 1982 353 396
[31] Discrete Contin. Dynam. Syst. 2009 1025 1045
[32] J. Math. Pures Appl. 2011 627 671
,[33] J. Differential Equations 2014 1078 1147
,Cité par Sources :