Spectral Properties of Random and Deterministic CMV Matrices
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 270-281.

Voir la notice de l'article provenant de la source EDP Sciences

The CMV matrices are unitary analogues of the discrete one-dimensional Schrödinger operators. We review spectral properties of a few classes of CMV matrices and describe families of random and deterministic CMV matrices which exhibit a transition in the distribution of their eigenvalues.
DOI : 10.1051/mmnp/20149518

M. Stoiciu 1

1 Department of Mathematics and Statistics, Williams College, Williamstown, MA 01267, USA
@article{MMNP_2014_9_5_a17,
     author = {M. Stoiciu},
     title = {Spectral {Properties} of {Random} and {Deterministic} {CMV} {Matrices}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {270--281},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {2014},
     doi = {10.1051/mmnp/20149518},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149518/}
}
TY  - JOUR
AU  - M. Stoiciu
TI  - Spectral Properties of Random and Deterministic CMV Matrices
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 270
EP  - 281
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149518/
DO  - 10.1051/mmnp/20149518
LA  - en
ID  - MMNP_2014_9_5_a17
ER  - 
%0 Journal Article
%A M. Stoiciu
%T Spectral Properties of Random and Deterministic CMV Matrices
%J Mathematical modelling of natural phenomena
%D 2014
%P 270-281
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149518/
%R 10.1051/mmnp/20149518
%G en
%F MMNP_2014_9_5_a17
M. Stoiciu. Spectral Properties of Random and Deterministic CMV Matrices. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 270-281. doi : 10.1051/mmnp/20149518. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149518/

[1] M. Aizenman, S. Molchanov Comm. Math. Phys. 1993 245 278

[2] M. Aizenman, J. Schenker, R. Friedrich, D. Hundertmark Commun. Math. Phys. 2001 219 253

[3] P.W. Anderson Phys. Rev. 1958 1492 1505

[4] J. Bellissard, P. Hislop, G. Stolz J. Stat. Phys. 2007 649 662

[5] J. Bourgain, C. Kenig Invent. Math. 2005 389 426

[6] J-M. Combes, F. Germinet, A. Klein J. Stat. Phys. 2009 201 216

[7] M.J. Cantero, L. Moral, L. Velázquez Linear Algebra Appl. 2003 29 56

[8] R. Del Rio, S. Jitomirskaya, Y. Last, B. Simon Phys. Rev. Lett. 1995 117 119

[9] F.J. Dyson J. Math. Phys. 1962 140 156

[10] P.J. Forrester. Log-gases and Random matrices. London Mathematical Society Monographs Series, 34. Princeton University Press, Princeton, NJ, 2010.

[11] J. Fröhlich, T. Spencer Comm. Math. Phys. 1983 151 184

[12] K. Gittins, N. Peyerimhoff, M. Stoiciu, D. Wirosoetis Conform. Geom. Dyn. 2012 184 203

[13] I. Ja. Goldsheid, S.A. Molchanov, L.A. Pastur Funkcional. Anal. i Priložen. 1977 1 10

[14] G.M. Graf, A. Vaghi Lett. Math. Phys. 2007 17 22

[15] A. Klein, O. Lenoble, P. Müller Ann. of Math. 2007 549 577

[16] R. Killip, I. Nenciu Int. Math. Res. Not. 2004 2665 2701

[17] R. Killip, M. Stoiciu Duke Math. J. 2009 361 399

[18] C.T. Mcmullen Amer. J. Math. 1998 691 721

[19] M.L. Mehta. Random matrices. Third Edition. Pure and Applied Mathematics (Amsterdam), 142. Elsevier/Academic Press, Amsterdam, 2004.

[20] N. Minami Comm. Math. Phys. 1996 709 725

[21] S. Molchanov (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 1978 70 103

[22] S. Molchanov Comm. Math. Phys. 1981 429 446

[23] P.J. Nicholls. A measure on the limit set of a discrete group. In Ergodic theory, symbolic dynamics, and hyperbolic spaces. Edited by T. Bedford, M. Keane, C. Series. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1991.

[24] S.J. Patterson Acta Math. 1976 241 273

[25] B. Simon. Orthogonal Polynomials on the Unit Circle, Vol. 1. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, Rhode Island, 2004.

[26] B. Simon. Orthogonal Polynomials on the Unit Circle, Vol. 2. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, Rhode Island, 2004.

[27] B. Simon Electron. Trans. Numer. Anal. 2006 328 368

[28] B. Simon J. Comput. Appl. Math. 2007 120 154

[29] M. Stoiciu J. Approx. Theory 2006 29 64

[30] M. Stoiciu. Poisson Statistics for Eigenvalues: From Random Schrödinger Operators to Random CMV Matrices. CRM Proceedings and Lecture Notes, volume 42 (2007), 465–475.

[31] D. Sullivan Inst. Hautes Études Sci. Publ. Math. No. 1979 171 202

[32] D. Sullivan Acta Math. 1984 259 277

Cité par Sources :