Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2014_9_5_a17, author = {M. Stoiciu}, title = {Spectral {Properties} of {Random} and {Deterministic} {CMV} {Matrices}}, journal = {Mathematical modelling of natural phenomena}, pages = {270--281}, publisher = {mathdoc}, volume = {9}, number = {5}, year = {2014}, doi = {10.1051/mmnp/20149518}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149518/} }
TY - JOUR AU - M. Stoiciu TI - Spectral Properties of Random and Deterministic CMV Matrices JO - Mathematical modelling of natural phenomena PY - 2014 SP - 270 EP - 281 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149518/ DO - 10.1051/mmnp/20149518 LA - en ID - MMNP_2014_9_5_a17 ER -
M. Stoiciu. Spectral Properties of Random and Deterministic CMV Matrices. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 270-281. doi : 10.1051/mmnp/20149518. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149518/
[1] Comm. Math. Phys. 1993 245 278
,[2] Commun. Math. Phys. 2001 219 253
, , ,[3] Phys. Rev. 1958 1492 1505
[4] J. Stat. Phys. 2007 649 662
, ,[5] Invent. Math. 2005 389 426
,[6] J. Stat. Phys. 2009 201 216
, ,[7] Linear Algebra Appl. 2003 29 56
, ,[8] Phys. Rev. Lett. 1995 117 119
, , ,[9] J. Math. Phys. 1962 140 156
[10] P.J. Forrester. Log-gases and Random matrices. London Mathematical Society Monographs Series, 34. Princeton University Press, Princeton, NJ, 2010.
[11] Comm. Math. Phys. 1983 151 184
,[12] Conform. Geom. Dyn. 2012 184 203
, , ,[13] Funkcional. Anal. i Priložen. 1977 1 10
, ,[14] Lett. Math. Phys. 2007 17 22
,[15] Ann. of Math. 2007 549 577
, ,[16] Int. Math. Res. Not. 2004 2665 2701
,[17] Duke Math. J. 2009 361 399
,[18] Amer. J. Math. 1998 691 721
[19] M.L. Mehta. Random matrices. Third Edition. Pure and Applied Mathematics (Amsterdam), 142. Elsevier/Academic Press, Amsterdam, 2004.
[20] Comm. Math. Phys. 1996 709 725
[21] (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 1978 70 103
[22] Comm. Math. Phys. 1981 429 446
[23] P.J. Nicholls. A measure on the limit set of a discrete group. In Ergodic theory, symbolic dynamics, and hyperbolic spaces. Edited by T. Bedford, M. Keane, C. Series. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1991.
[24] Acta Math. 1976 241 273
[25] B. Simon. Orthogonal Polynomials on the Unit Circle, Vol. 1. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, Rhode Island, 2004.
[26] B. Simon. Orthogonal Polynomials on the Unit Circle, Vol. 2. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, Rhode Island, 2004.
[27] Electron. Trans. Numer. Anal. 2006 328 368
[28] J. Comput. Appl. Math. 2007 120 154
[29] J. Approx. Theory 2006 29 64
[30] M. Stoiciu. Poisson Statistics for Eigenvalues: From Random Schrödinger Operators to Random CMV Matrices. CRM Proceedings and Lecture Notes, volume 42 (2007), 465–475.
[31] Inst. Hautes Études Sci. Publ. Math. No. 1979 171 202
[32] Acta Math. 1984 259 277
Cité par Sources :