A Characterization of Compact SG Pseudo-differential Operators on L2(ℝn)
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 239-243.

Voir la notice de l'article provenant de la source EDP Sciences

We give a necessary and sufficient condition for pseudo-differential operators with SG symbols to be compact from L2(ℝn) into L2(ℝn).
DOI : 10.1051/mmnp/20149515

S. Molahajloo 1

1 Department of Mathematics and Statistics, Queen’s University University Avenue, Kingston, Ontario K7L 3N6, Canada
@article{MMNP_2014_9_5_a14,
     author = {S. Molahajloo},
     title = {A {Characterization} of {Compact} {SG} {Pseudo-differential} {Operators} on {L2(\ensuremath{\mathbb{R}}n)}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {239--243},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {2014},
     doi = {10.1051/mmnp/20149515},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149515/}
}
TY  - JOUR
AU  - S. Molahajloo
TI  - A Characterization of Compact SG Pseudo-differential Operators on L2(ℝn)
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 239
EP  - 243
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149515/
DO  - 10.1051/mmnp/20149515
LA  - en
ID  - MMNP_2014_9_5_a14
ER  - 
%0 Journal Article
%A S. Molahajloo
%T A Characterization of Compact SG Pseudo-differential Operators on L2(ℝn)
%J Mathematical modelling of natural phenomena
%D 2014
%P 239-243
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149515/
%R 10.1051/mmnp/20149515
%G en
%F MMNP_2014_9_5_a14
S. Molahajloo. A Characterization of Compact SG Pseudo-differential Operators on L2(ℝn). Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 239-243. doi : 10.1051/mmnp/20149515. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149515/

[1] F. V. Atkinson Mat. Sbornik N. S. 1951 3 14

[2] P. Boggiatto, E. Buzano, L. Rodino. Global Hypoellipticity and Spectral Theory. Akademie-Verlag, 1996.

[3] M. Cappiello, L. Rodino Rocky Mountain J. Math. 2006 1117 1148

[4] S. Coriasco, L. RodiCauchy problem for SG-hyperbolic equations with constant multipliers. no. Ricerche Mat. Suppl., XLVIII (1999), 25-43.

[5] A. Dasgupta, M. W. Wong Studia Math. 2008 186 197

[6] Y. V. Egorov, B.-W. Schulze. Pseudo-Differential Operators, Singularities, Applications. Birkhäuser, 1997.

[7] V. V. Grushin Funct. Anal. Appl. 1970 202 212

[8] L. Hörmander. The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators. Reprint of the 1994 Edition, Classics in Mathematics, Springer-Verlag, 2007.

[9] S. Molahajloo. A characterization of compact pseudo-differential operators on S1. in Pseudo-Differential Operators: Analysis, Applications and Computations, Operator Theory: Advances and Applications, Birkhäuser, 213 (2011), 25–29.

[10] S. Molahajloo, M. W. Wong J. Pseudo-Differ. Oper. Appl 2010 183 205

[11] F. Nicola Proc. Amer. Math. Soc. 2003 2841 2848

[12] M. Schechter J. Math. Anal. Appl. 1966 205 215

[13] M. Schechter. Spectra of Partial Differential Operators. Second Edition, North-Holland, 1986.

[14] F. Wolf Comm. Pure Appl. Math. 1959 211 228

[15] M. W. Wong. An Introduction to Pseudo-Differential Operators. Second Edition, World Scientific, 1999.

Cité par Sources :