Efficient Processing of Fluorescence Images Using Directional Multiscale Representations
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 177-193.

Voir la notice de l'article provenant de la source EDP Sciences

Recent advances in high-resolution fluorescence microscopy have enabled the systematic study of morphological changes in large populations of cells induced by chemical and genetic perturbations, facilitating the discovery of signaling pathways underlying diseases and the development of new pharmacological treatments. In these studies, though, due to the complexity of the data, quantification and analysis of morphological features are for the vast majority handled manually, slowing significantly data processing and limiting often the information gained to a descriptive level. Thus, there is an urgent need for developing highly efficient automated analysis and processing tools for fluorescent images. In this paper, we present the application of a method based on the shearlet representation for confocal image analysis of neurons. The shearlet representation is a newly emerged method designed to combine multiscale data analysis with superior directional sensitivity, making this approach particularly effective for the representation of objects defined over a wide range of scales and with highly anisotropic features. Here, we apply the shearlet representation to problems of soma detection of neurons in culture and extraction of geometrical features of neuronal processes in brain tissue, and propose it as a new framework for large-scale fluorescent image analysis of biomedical data.
DOI : 10.1051/mmnp/20149512

D. Labate 1 ; F. Laezza 2 ; P. Negi 1 ; B. Ozcan 1 ; M. Papadakis 1

1 Dept. of Mathematics, University of Houston, Houston, Texas 77204, USA
2 Dept. of Pharmacology and Toxicology, UT Medical Branch, Galveston, TX 77555, USA
@article{MMNP_2014_9_5_a11,
     author = {D. Labate and F. Laezza and P. Negi and B. Ozcan and M. Papadakis},
     title = {Efficient {Processing} of {Fluorescence} {Images} {Using} {Directional} {Multiscale} {Representations}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {177--193},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {2014},
     doi = {10.1051/mmnp/20149512},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149512/}
}
TY  - JOUR
AU  - D. Labate
AU  - F. Laezza
AU  - P. Negi
AU  - B. Ozcan
AU  - M. Papadakis
TI  - Efficient Processing of Fluorescence Images Using Directional Multiscale Representations
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 177
EP  - 193
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149512/
DO  - 10.1051/mmnp/20149512
LA  - en
ID  - MMNP_2014_9_5_a11
ER  - 
%0 Journal Article
%A D. Labate
%A F. Laezza
%A P. Negi
%A B. Ozcan
%A M. Papadakis
%T Efficient Processing of Fluorescence Images Using Directional Multiscale Representations
%J Mathematical modelling of natural phenomena
%D 2014
%P 177-193
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149512/
%R 10.1051/mmnp/20149512
%G en
%F MMNP_2014_9_5_a11
D. Labate; F. Laezza; P. Negi; B. Ozcan; M. Papadakis. Efficient Processing of Fluorescence Images Using Directional Multiscale Representations. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 177-193. doi : 10.1051/mmnp/20149512. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149512/

[1] Y. Al-Kofahi, W. Lassoued, W. Lee, B. Roysam IEEE Trans. Biomed. Eng. 2010 841 852

[2] E. J. Candès, D. L. Donoho Comm. Pure and Appl. Math. 2004 216 266

[3] C. W. Chang, M. A. Mycek J Biophotonics 2012 449 457

[4] B. Delatour, V. Blanchard, L. Pradier, C. Duyckaerts Neurobiol Dis. 2004 41 47

[5] A. Dima, M. Scholz, K. Obermayer IEEE Trans. Image Process. 2002 790 801

[6] G. Easley, D. Labate, W. Lim Appl. Comput. Harmon. Anal. 2008 25 46

[7] G. Easley, D. Labate, P. S. Negi Math. Model. Nat. Phen. 2013 60 74

[8] N.I. Fisher. Statistical analysis of circular data. Cambridge University Press, 1993.

[9] C. Grigorescu, N. Petkov IEEE Trans. on Image Processing 2003 1274 1286

[10] K. Guo, D. Labate SIAM J. Math. Anal. 2007 298 318

[11] K. Guo, D. Labate SIAM Journal on Imaging Sciences 2009 959 986

[12] K. Guo, D. Labate Appl. Comput. Harmon. Anal. 2010 231 242

[13] K. Guo, D. Labate Math. Model. Nat. Phen. 2013 82 105

[14] K. Guo, D. Labate, W. Lim Appl. Comput. Harmon. Anal. 2009 24 46

[15] M. Holschneider. Wavelets. Analysis tool. Oxford University Press, Oxford, 1995.

[16] B. Jacobs, H. Praag, F. Gage Mol. Psychiatry 2000 262 269

[17] T. F. James, J. Luisi, M. N. Nenov, N. Panova-Electronova, D. Labate, F. Laezza. The Nav1.2 channel is regulated by glycogen synthase kinase 3 (GSK3). To appear in Neuropharmacology (2014).

[18] S. Kullback. Information theory and statistics. John Wiley and Sons, NY, 1959.

[19] G. Kutyniok, D. Labate Trans. Amer. Math. Soc. 2009 2719 2754

[20] G. Kutyniok, D. Labate. Shearlets: multiscale analysis for multivariate data. Birkhäuser, Boston (2012).

[21] D. Labate, W. Lim, G. Kutyniok, G. Weiss. Sparse multidimensional representation using shearlets. Wavelets XI (San Diego, CA, 2005), 254-262, SPIE Proc. 5914, SPIE, Bellingham, WA, (2005).

[22] M.R. Lamprecht, D.M. Sabatini, A.E. Carpenter Biotechniques 2007 71 75

[23] C. G. Langhammer, P. M. Previtera, E. S. Sweet, S. S. Sran, M. Chen, B. L. Firestein Cytometry A 2010 1160 1168

[24] F. Li, Z. Yin, G. Jin, H. Zhao, S.T. Wong. Bioimage informatics for systems pharmacology. PLoS Comput Biol. 9 (2013), no. 4, Chapter 17.

[25] S. Mallat. A wavelet tour of signal processing. Academic Press, San Diego, CA, 1998.

[26] N.T. Milosevic, D. Ristanovic, J.B. Stankovic Journal of Neuroscience Methods 2005 198 204

[27] R. F. Murphy, E. Meijering, G. Danuser IEEE Trans. Image Process. 2005 1233 1236

[28] V. Ntziachristos Annu. Rev. Biomed. Eng. 2006 1 33

[29] B. Ozcan, D. Labate, D. Jimenez, M. Papadakis. Directional and non-directional representations for the characterization of neuronal morphology. Wavelets XV (San Diego, CA, 2013), SPIE Proc. 8858 (2013).

[30] V. M. Patel, G. R. Easley, D. M. Healy IEEE Trans. Image Proc. 2009 2673 2685

[31] C. Portera-Cailliau, R.M. Weimer, V. De Paola, P. Caroni, K. Svoboda PLoS Biol. 2005 1473 1487

[32] X. Qi, F. Xing, D. Foran, L. Yang IEEE Trans Biomed Eng 2012 754 765

[33] Y. Rubner, C. Tomasi, L. J. Guibas. A metric for distributions with applications to image databases. Proceedings ICCV, (1998), 59-66.

[34] Y. Rubner, C. Tomasi, L. J. Guibas International Journal of Computer Vision 2000 99 121

[35] J. Schoenen Neuroscience 1982 2057 2087

[36] D. A. Sholl J. Anat. 1953 387 406

[37] P. Vallotton, R. Lagerstrom, C. Sun, M. Buckley, D. Wang Cytom. Part A 2007 889 895

[38] C. Vonesch, M. Unser IEEE Trans. Image Proc. 2008 539 549

[39] C. Vonesch, M. Unser IEEE Trans. Image Proc. 2009 509 523

[40] C. Wählby, I. M. Sintorn, F. Erlandsson, G. Borgefors, E. Bengtsson J. Microsc. 2004 67 76

[41] G. Weiss, E. Wilson. The mathematical theory of wavelets. Proceeding of the NATO–ASI Meeting. Harmonic Analysis 2000. A Celebration. Kluwer Publisher, (2001).

[42] Q. Wen, A. Stepanyants, G.N. Elston, A. Y. Grosberg, D. B. Chklovskiia PNAS 2009 12536 12541

[43] C. Yan, A. Li, B. Zhang, W. Ding, Q. Luo, H. Gong PLoS One 2013 4

[44] S. Yi, D. Labate, G. R. Easley, H. Krim IEEE Trans. Image Process. 2009 929 941

Cité par Sources :