Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2014_9_5_a8, author = {R. Ibragimov and V. Vatchev}, title = {Reconstruction of {Structured} {Quadratic} {Pencils} from {Eigenvalues} on {Ellipses} and {Parabolas}}, journal = {Mathematical modelling of natural phenomena}, pages = {138--147}, publisher = {mathdoc}, volume = {9}, number = {5}, year = {2014}, doi = {10.1051/mmnp/20149509}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149509/} }
TY - JOUR AU - R. Ibragimov AU - V. Vatchev TI - Reconstruction of Structured Quadratic Pencils from Eigenvalues on Ellipses and Parabolas JO - Mathematical modelling of natural phenomena PY - 2014 SP - 138 EP - 147 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149509/ DO - 10.1051/mmnp/20149509 LA - en ID - MMNP_2014_9_5_a8 ER -
%0 Journal Article %A R. Ibragimov %A V. Vatchev %T Reconstruction of Structured Quadratic Pencils from Eigenvalues on Ellipses and Parabolas %J Mathematical modelling of natural phenomena %D 2014 %P 138-147 %V 9 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149509/ %R 10.1051/mmnp/20149509 %G en %F MMNP_2014_9_5_a8
R. Ibragimov; V. Vatchev. Reconstruction of Structured Quadratic Pencils from Eigenvalues on Ellipses and Parabolas. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 138-147. doi : 10.1051/mmnp/20149509. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149509/
[1] R. Askey. Linearization of the product of orthogonal polynomials. Problems in Analysis (R. Gunning, ed.), Princeton University Press, Princeton, N.J., (1970), 223–228.
[2] Linear Algebra Appl. 2008 1590 1606
, , ,[3] Acta Numer. 2002 1 71
,[4] SIAM J. Matrix Anal. Appl. 2004 995 1020
, ,[5] Numerical Algorithms 2010 419 437
, ,[6] Canad. J. Math. 1970 171 175
[7] J. Math. Fluid. Mech. 2009 60 90
,[8] Constr. Approx. 2001 413 429
,[9] V. Totik. Orthogonal Polynomials, Surveys in Approximation Theory., 1 (2005), 70–125.
Cité par Sources :