Reconstruction of Structured Quadratic Pencils from Eigenvalues on Ellipses and Parabolas
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 138-147
Cet article a éte moissonné depuis la source EDP Sciences
In the present paper we study the reconstruction of a structured quadratic pencil from eigenvalues distributed on ellipses or parabolas. A quadratic pencil is a square matrix polynomial QP(λ) = M λ2+Cλ +K, where M, C, and K are real square matrices. The approach developed in the paper is based on the theory of orthogonal polynomials on the real line. The results can be applied to more general distribution of eigenvalues. The problem with added single eigenvector is also briefly discussed. As an illustration of the reconstruction method, the eigenvalue problem on linearized stability of certain class of stationary exact solution of the Navier-Stokes equations describing atmospheric flows on a spherical surface is reformulated as a simple mass-spring system by means of this method.
@article{10_1051_mmnp_20149509,
author = {R. Ibragimov and V. Vatchev},
title = {Reconstruction of {Structured} {Quadratic} {Pencils} from {Eigenvalues} on {Ellipses} and {Parabolas}},
journal = {Mathematical modelling of natural phenomena},
pages = {138--147},
year = {2014},
volume = {9},
number = {5},
doi = {10.1051/mmnp/20149509},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149509/}
}
TY - JOUR AU - R. Ibragimov AU - V. Vatchev TI - Reconstruction of Structured Quadratic Pencils from Eigenvalues on Ellipses and Parabolas JO - Mathematical modelling of natural phenomena PY - 2014 SP - 138 EP - 147 VL - 9 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149509/ DO - 10.1051/mmnp/20149509 LA - en ID - 10_1051_mmnp_20149509 ER -
%0 Journal Article %A R. Ibragimov %A V. Vatchev %T Reconstruction of Structured Quadratic Pencils from Eigenvalues on Ellipses and Parabolas %J Mathematical modelling of natural phenomena %D 2014 %P 138-147 %V 9 %N 5 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149509/ %R 10.1051/mmnp/20149509 %G en %F 10_1051_mmnp_20149509
R. Ibragimov; V. Vatchev. Reconstruction of Structured Quadratic Pencils from Eigenvalues on Ellipses and Parabolas. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 138-147. doi: 10.1051/mmnp/20149509
[1] R. Askey. Linearization of the product of orthogonal polynomials. Problems in Analysis (R. Gunning, ed.), Princeton University Press, Princeton, N.J., (1970), 223–228.
[2] , , , Linear Algebra Appl. 2008 1590 1606
[3] , Acta Numer. 2002 1 71
[4] , , SIAM J. Matrix Anal. Appl. 2004 995 1020
[5] , , Numerical Algorithms 2010 419 437
[6] Canad. J. Math. 1970 171 175
[7] , J. Math. Fluid. Mech. 2009 60 90
[8] , Constr. Approx. 2001 413 429
[9] V. Totik. Orthogonal Polynomials, Surveys in Approximation Theory., 1 (2005), 70–125.
Cité par Sources :