Local Controllability of Models of Combined Anticancer Therapy with Delays in Control
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 216-226.

Voir la notice de l'article provenant de la source EDP Sciences

We present sufficient conditions of local controllability for a class of models of treatment response to combined anticancer therapies which include delays in control strategies. The combined therapy is understood as combination of direct anticancer strategy e.g. chemotherapy and indirect modality (in this case antiangiogenic therapy). Controllability of the models in the form of semilinear second order dynamic systems with delays in control enables to answer the questions of realizability of different objectives of multimodal therapy in the presence of PK/PD effects. We compare results for the models without delays and conditions for relative local controllability of models with delays.
DOI : 10.1051/mmnp/20149413

A. Świerniak 1 ; J. Klamka 1

1 Department of Automatic Control, Silesian University of Technology, 44-100 Gliwice, Poland
@article{MMNP_2014_9_4_a12,
     author = {A. \'Swierniak and J. Klamka},
     title = {Local {Controllability} of {Models} of {Combined} {Anticancer} {Therapy} with {Delays} in {Control}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {216--226},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2014},
     doi = {10.1051/mmnp/20149413},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149413/}
}
TY  - JOUR
AU  - A. Świerniak
AU  - J. Klamka
TI  - Local Controllability of Models of Combined Anticancer Therapy with Delays in Control
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 216
EP  - 226
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149413/
DO  - 10.1051/mmnp/20149413
LA  - en
ID  - MMNP_2014_9_4_a12
ER  - 
%0 Journal Article
%A A. Świerniak
%A J. Klamka
%T Local Controllability of Models of Combined Anticancer Therapy with Delays in Control
%J Mathematical modelling of natural phenomena
%D 2014
%P 216-226
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149413/
%R 10.1051/mmnp/20149413
%G en
%F MMNP_2014_9_4_a12
A. Świerniak; J. Klamka. Local Controllability of Models of Combined Anticancer Therapy with Delays in Control. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 216-226. doi : 10.1051/mmnp/20149413. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149413/

[1] G. Bergers, D. Hanahan Nature Reviews Cancer 2008 592 603

[2] A. Czornik, A. Świerniak Journal of the Franklin Institute 2001 443 453

[3] A. Czornik, A. Świerniak Journal of the Franklin Institute 2004 491 503

[4] M. Dolbniak, A. Swierniak. Comparison of simple models of periodic protocols for combined anticancer therapy. Computational and Mathematical Methods in Medicine, (2013), Article ID 567213, doi: 11.1055/2013/567213.

[5] A. D’Onofrio, A. Gandolfi Mathematical Medicine and Biology 2009 63 69

[6] A. D’Onofrio, A. Gandolfi Journal of Theoretical Biology 2010 253 265

[7] A. D’Onofrio, A. Gandolfi. Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999), Mathematical Biosciences, 191 (2004), 159–184.

[8] J.M.L. Ebos, R.S. Kerbel Nature Reviews Clinical Oncology 2011 210 221

[9] A. Ergun, K. Camphausen, L.M. Wein Bulletin of Mathematical Biology 2003 407

[10] J. Folkman N. Engl. J. Med. 1971 1182 1186

[11] J. Folkman Ann. Surg. 1972 409 416

[12] P. Hahnfeldt, D. Panigrahy, J. Folkman, L. Hlatky Cancer Research 1999 4770 4775

[13] D. Hanahan, R.A. Weinberg Cell 2011 647 670

[14] R.K. Jain. Normalization of tumor vasculature and microenvironment in antiangiogenic therapies. ASCO Annual Meeting, (2007), 412–417.

[15] R.S. Kerbel Nature 1997 335 340

[16] J. Klamka, Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht, Netherlands, 1991.

[17] J. Klamka J. Math. Anal. Appl. 1996 365 374

[18] J. Klamka Bull. PAS, Techn. Sci. 2004 25 30

[19] J. Klamka, A. Swierniak Control and Cybernetics 2013 125 138

[20] T. Li-Song, J. Ke-Tao, H. Kui-Feng, W. Hao-Hao, C. Jiang, Y. De-Cao Journal of the Chinese Medical Association 2010 281 288

[21] J. Ma, D.J. Waxman Molecular Cancer Therapeutics 2010 3670 3684

[22] S.R. Mcdougall, A.R. Anderson, M.A. Chaplain, J.A. Sherratt Bulletin of Mathematical Biology 2002 673 702

[23] M.J. Piotrowska, U. Forys Journal of Mathematical Analysis and Applications 2011 180 203

[24] A. Swierniak Applicationes Mathematicae 2009 333 348

[25] A. Swierniak Bulletin of the Polish Academy of Sciences, Technical Sciences 2008 367 378

[26] A. Swierniak, J. Klamka. Control properties of models of antiangiogenic therapy. in: Advances in Automatics and Robotics (K. Malinowski and R. Dindorf R. Eds.), Monograph of Committee of Automatics and Robotics PAS, 16 (2011), no. 2, 300–312.

Cité par Sources :