Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2014_9_4_a12, author = {A. \'Swierniak and J. Klamka}, title = {Local {Controllability} of {Models} of {Combined} {Anticancer} {Therapy} with {Delays} in {Control}}, journal = {Mathematical modelling of natural phenomena}, pages = {216--226}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2014}, doi = {10.1051/mmnp/20149413}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149413/} }
TY - JOUR AU - A. Świerniak AU - J. Klamka TI - Local Controllability of Models of Combined Anticancer Therapy with Delays in Control JO - Mathematical modelling of natural phenomena PY - 2014 SP - 216 EP - 226 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149413/ DO - 10.1051/mmnp/20149413 LA - en ID - MMNP_2014_9_4_a12 ER -
%0 Journal Article %A A. Świerniak %A J. Klamka %T Local Controllability of Models of Combined Anticancer Therapy with Delays in Control %J Mathematical modelling of natural phenomena %D 2014 %P 216-226 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149413/ %R 10.1051/mmnp/20149413 %G en %F MMNP_2014_9_4_a12
A. Świerniak; J. Klamka. Local Controllability of Models of Combined Anticancer Therapy with Delays in Control. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 216-226. doi : 10.1051/mmnp/20149413. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149413/
[1] Nature Reviews Cancer 2008 592 603
,[2] Journal of the Franklin Institute 2001 443 453
,[3] Journal of the Franklin Institute 2004 491 503
,[4] M. Dolbniak, A. Swierniak. Comparison of simple models of periodic protocols for combined anticancer therapy. Computational and Mathematical Methods in Medicine, (2013), Article ID 567213, doi: 11.1055/2013/567213.
[5] Mathematical Medicine and Biology 2009 63 69
,[6] Journal of Theoretical Biology 2010 253 265
,[7] A. D’Onofrio, A. Gandolfi. Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999), Mathematical Biosciences, 191 (2004), 159–184.
[8] Nature Reviews Clinical Oncology 2011 210 221
,[9] Bulletin of Mathematical Biology 2003 407
, ,[10] N. Engl. J. Med. 1971 1182 1186
[11] Ann. Surg. 1972 409 416
[12] Cancer Research 1999 4770 4775
, , ,[13] Cell 2011 647 670
,[14] R.K. Jain. Normalization of tumor vasculature and microenvironment in antiangiogenic therapies. ASCO Annual Meeting, (2007), 412–417.
[15] Nature 1997 335 340
[16] J. Klamka, Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht, Netherlands, 1991.
[17] J. Math. Anal. Appl. 1996 365 374
[18] Bull. PAS, Techn. Sci. 2004 25 30
[19] Control and Cybernetics 2013 125 138
,[20] Journal of the Chinese Medical Association 2010 281 288
, , , , ,[21] Molecular Cancer Therapeutics 2010 3670 3684
,[22] Bulletin of Mathematical Biology 2002 673 702
, , ,[23] Journal of Mathematical Analysis and Applications 2011 180 203
,[24] Applicationes Mathematicae 2009 333 348
[25] Bulletin of the Polish Academy of Sciences, Technical Sciences 2008 367 378
[26] A. Swierniak, J. Klamka. Control properties of models of antiangiogenic therapy. in: Advances in Automatics and Robotics (K. Malinowski and R. Dindorf R. Eds.), Monograph of Committee of Automatics and Robotics PAS, 16 (2011), no. 2, 300–312.
Cité par Sources :