Control Approach to an Ill-Posed Variational Inequality
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 153-170.

Voir la notice de l'article provenant de la source EDP Sciences

We are concerned with the proof of a generalized solution to an ill-posed variational inequality. This is determined as a solution to an appropriate minimization problem involving a nonconvex functional, treated by an optimal control technique.
DOI : 10.1051/mmnp/20149410

G. Marinoschi 1

1 Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy, Calea 13 Septembrie 13, and Simion Stoilow Institute of Mathematics, research group of the project PN-II-ID-PCE-2011-3-0045, Bucharest, Romania
@article{MMNP_2014_9_4_a9,
     author = {G. Marinoschi},
     title = {Control {Approach} to an {Ill-Posed} {Variational} {Inequality}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {153--170},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2014},
     doi = {10.1051/mmnp/20149410},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149410/}
}
TY  - JOUR
AU  - G. Marinoschi
TI  - Control Approach to an Ill-Posed Variational Inequality
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 153
EP  - 170
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149410/
DO  - 10.1051/mmnp/20149410
LA  - en
ID  - MMNP_2014_9_4_a9
ER  - 
%0 Journal Article
%A G. Marinoschi
%T Control Approach to an Ill-Posed Variational Inequality
%J Mathematical modelling of natural phenomena
%D 2014
%P 153-170
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149410/
%R 10.1051/mmnp/20149410
%G en
%F MMNP_2014_9_4_a9
G. Marinoschi. Control Approach to an Ill-Posed Variational Inequality. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 153-170. doi : 10.1051/mmnp/20149410. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149410/

[1] V. Arnăutu, P. Neittaanmäki. Optimal control from theory to computer programs. Kluwer Academic Publishers. Dordrecht, 2003.

[2] V. Barbu. Optimal control of variational inequalities. Pitman. Massachusets, 1984.

[3] V. Barbu. Nonlinear differential equations of monotone types in Banach spaces. Springer. New York, 2010.

[4] C.M. Elliott, J.R. Ockendon. Weak and variational methods for moving boundary problems. Research Notes in Mathematics 59. Pitman, 1982.

[5] J.L. Lions. Quelques méthodes de resolution des problèmes aux limites non linéaires. Dunod. Paris, 1969.

[6] J.L. Lions. Contrôle des systèmes distribués singuliers. Bordas. Paris, 1983.

[7] E. Magenes. Topics in parabolic equations: Some typical free boundary problems. In: Boundary value Problems for Linear Evolution Partial Differential Equations (ed. H.G. Garnir). D. Reidel (1977), 239-312.

Cité par Sources :