Spectral Properties of the Connectivity Matrix and the SIS-epidemic Threshold for Mid-size Metapopulations
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 2, pp. 108-120.

Voir la notice de l'article provenant de la source EDP Sciences

We consider the spread of an infectious disease on a heterogeneous metapopulation defined by any (correlated or uncorrelated) network. The infection evolves under transmission, recovery and migration mechanisms. We study some spectral properties of a connectivity matrix arising from the continuous-time equations of the model. In particular we show that the classical sufficient condition of instability for the disease-free equilibrium, well known for the particular case of uncorrelated networks, works also for the general case. We give also an alternative condition that yields a more accurate estimation of the epidemic threshold for correlated (either assortative or dissortative) networks.
DOI : 10.1051/mmnp/20149207

D. Juher 1 ; V. Mañosa 2

1 Dept. Informàtica, Matemàtica Aplicada i Estadística, Universitat de Girona, 17071, Girona, Spain
2 Dept. Matemàtica Aplicada III, Universitat Politècnica de Catalunya, 08222, Terrassa, Spain
@article{MMNP_2014_9_2_a6,
     author = {D. Juher and V. Ma\~nosa},
     title = {Spectral {Properties} of the {Connectivity} {Matrix} and the {SIS-epidemic} {Threshold} for {Mid-size} {Metapopulations}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {108--120},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2014},
     doi = {10.1051/mmnp/20149207},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149207/}
}
TY  - JOUR
AU  - D. Juher
AU  - V. Mañosa
TI  - Spectral Properties of the Connectivity Matrix and the SIS-epidemic Threshold for Mid-size Metapopulations
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 108
EP  - 120
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149207/
DO  - 10.1051/mmnp/20149207
LA  - en
ID  - MMNP_2014_9_2_a6
ER  - 
%0 Journal Article
%A D. Juher
%A V. Mañosa
%T Spectral Properties of the Connectivity Matrix and the SIS-epidemic Threshold for Mid-size Metapopulations
%J Mathematical modelling of natural phenomena
%D 2014
%P 108-120
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149207/
%R 10.1051/mmnp/20149207
%G en
%F MMNP_2014_9_2_a6
D. Juher; V. Mañosa. Spectral Properties of the Connectivity Matrix and the SIS-epidemic Threshold for Mid-size Metapopulations. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 2, pp. 108-120. doi : 10.1051/mmnp/20149207. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149207/

[1] R.M. Anderson, R.M. May Science 1982 1053 1060

[2] A. Barabási, R. Albert Science 1999 509 512

[3] A. Berman, R.J. Plemmons. Nonnegative matrices in the Mathematical Sciences. Classics in Applied Mathematics, 9 SIAM (1994).

[4] M. Boguñá, R. Pastor-Satorras Physical Review E 2002 047104

[5] V. Colizza, A. Vespignani Physical Review Letters 2007 148701

[6] V. Colizza, R. Pastor-Satorras, A. Vespignani Nature Physics 2007 276 282

[7] V. Colizza, A. Vespignani J. Theor. Biol 2008 450 467

[8] P. C. Cross, P. L. F. Johnson, J. O. Lloyd-Smith, W. M. Getz J. R. Soc. Interface 2007 315 24

[9] K. Dietz. Overall population patterns in the transmission cycle of infectious disease agents, in Population Biology of Infectious Diseases (ed. R.M. Anderson, R.M. May), Dahlem Workshop Reports Vol. 25, 87-102. Springer (1982).

[10] K. T. D. Eames, M. J. Keeling PNAS 2002 13330 13335

[11] H. Fukś, A.T. Lawniczak, R. Duchesne The European Physical Journal B 2006 209 214

[12] J.L. Garcia-Domingo, D. Juher, J. Saldaña Physica D 2008 640 651

[13] R.A. Horn, C.R. Johnson. Matrix Analysis, Cambridge Univ. Press (1990).

[14] L. Hufnagel, D. Brockmann, T. Geisel PNAS 2004 15124

[15] D. Juher, J. Ripoll, J. Saldaña Physical Review E 2009 041920

[16] M. J. Keeling Proc. R. Soc. Lond. B 1999 859 869

[17] H. Mccallum, N. Barlow, J. Hone Trends in Ecology & Evolution 2001 295 300

[18] R. M. May, A. L. Lloyd Physical Review E 2001 066112

[19] M. E. J. Newman Physical Review E 2002 016128

[20] M. E. J. Newman Phys. Rev. Lett. 2002 208701

[21] Y.A. Rho, L. S. Liebovitch, I. B. Schwartz Physics Letters A 2008 5017

[22] J. Saldaña Physical Review E 2008 012902

[23] J. Saldaña Mathematical Modelling of Natural Phenomema 2010 22 37

[24] H. R. Thieme. Mathematics in population biology. Princeton Univ. Press (2003).

[25] R. Xulvi-Brunet, I.M. Sokolov Acta Physica Polonica B. 2005 1431 1455

Cité par Sources :