The Effect of Graph Structure on Epidemic Spread in a Class of Modified Cycle Graphs
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 2, pp. 89-107.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, an SIS (susceptible-infected-susceptible)-type epidemic propagation is studied on a special class of 3-regular graphs, called modified cycle graphs. The modified cycle graph is constructed from a cycle graph with N nodes by connecting node i to the node i + d in a way that every node has exactly three links. Monte-Carlo simulations show that the propagation process depends on the value of d in a non-monotone way. A new theoretical model is developed to explain this phenomenon. This reveals a new relation between the spreading process and the average path length in the graph.
DOI : 10.1051/mmnp/20149206

A. Szabó-Solticzky 1 ; P.L. Simon 1

1 Institute of Mathematics, Eötvös Loránd University, Budapest, Hungary and Numerical Analysis and Large Networks Research Group, Hungarian Academy of Sciences
@article{MMNP_2014_9_2_a5,
     author = {A. Szab\'o-Solticzky and P.L. Simon},
     title = {The {Effect} of {Graph} {Structure} on {Epidemic} {Spread} in a {Class} of {Modified} {Cycle} {Graphs}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {89--107},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2014},
     doi = {10.1051/mmnp/20149206},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149206/}
}
TY  - JOUR
AU  - A. Szabó-Solticzky
AU  - P.L. Simon
TI  - The Effect of Graph Structure on Epidemic Spread in a Class of Modified Cycle Graphs
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 89
EP  - 107
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149206/
DO  - 10.1051/mmnp/20149206
LA  - en
ID  - MMNP_2014_9_2_a5
ER  - 
%0 Journal Article
%A A. Szabó-Solticzky
%A P.L. Simon
%T The Effect of Graph Structure on Epidemic Spread in a Class of Modified Cycle Graphs
%J Mathematical modelling of natural phenomena
%D 2014
%P 89-107
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149206/
%R 10.1051/mmnp/20149206
%G en
%F MMNP_2014_9_2_a5
A. Szabó-Solticzky; P.L. Simon. The Effect of Graph Structure on Epidemic Spread in a Class of Modified Cycle Graphs. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 2, pp. 89-107. doi : 10.1051/mmnp/20149206. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149206/

[1] A. Barrat, M. Barthelemy, A. Vespignani. Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge, 2008.

[2] M. Boguna, R. Pastor–Satorras Phys. Rev. E. 2002 47104

[3] L. Danon, A.P. Ford, T. House, C.P. Jewell, M.J. Keeling, G.O. Roberts, J.V. Ross, M.C. Vernon. Networks and the Epidemiology of Infectious Disease, Interdisciplinary Perspectives on Infectious Diseases. 2011:284909 special issue “Network Perspectives on Infectious Disease Dynamics”.

[4] J.P. Gleeson Phys. Rev. Letters 2011 068701

[5] T. House, M. J. Keeling J. Roy. Soc. Interface 2011 67 73

[6] M.J. Keeling, K.T.D. Eames J. Roy. Soc. Interface 2005 295 307

[7] N. Nagy, P.L. Simon Central European Journal of Mathematics 2013 800 815

[8] M. E. J. Newman SIAM Review 2003 167 256

[9] J. Saramäki, K. Kaski J. Theor. Biol. 2005 413 421

[10] P.L. Simon, M. Taylor, I.Z. Kiss J. Math. Biol. 2010 479 508

[11] M. Taylor, P.L. Simon, D. M. Green, T. House, I.Z. Kiss J. Math. Biol. 2012 1021 1042

[12] H.C. Tijms. A First Course in Stochastic Models. John Wiley and Sons, 2003.

Cité par Sources :