Dynamical Features in a Slow-fast Piecewise Linear Hamiltonian System
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 155-172.

Voir la notice de l'article provenant de la source EDP Sciences

We demonstrate that a piecewise linear slow-fast Hamiltonian system with an equilibrium of the saddle-center type can have a sequence of small parameter values for which a one-round homoclinic orbit to this equilibrium exists. This contrasts with the well-known findings by Amick and McLeod and others that solutions of such type do not exist in analytic Hamiltonian systems, and that the separatrices are split by the exponentially small quantity. We also discuss existence of homoclinic trajectories to small periodic orbits of the Lyapunov family as well as symmetric periodic orbits near the homoclinic connection. Our further result, illustrated by simulations, concerns the complicated structure of orbits related to passage through a non-smooth bifurcation of a periodic orbit.
DOI : 10.1051/mmnp/20138510

A. Kazakov 1 ; N. Kulagin 2 ; L. Lerman 1

1 Lobachevsky State University of Nizhni Novgorod, Russia
2 The State University of Management, Moscow, Russia
@article{MMNP_2013_8_5_a9,
     author = {A. Kazakov and N. Kulagin and L. Lerman},
     title = {Dynamical {Features} in a {Slow-fast} {Piecewise} {Linear} {Hamiltonian} {System}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {155--172},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2013},
     doi = {10.1051/mmnp/20138510},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138510/}
}
TY  - JOUR
AU  - A. Kazakov
AU  - N. Kulagin
AU  - L. Lerman
TI  - Dynamical Features in a Slow-fast Piecewise Linear Hamiltonian System
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 155
EP  - 172
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138510/
DO  - 10.1051/mmnp/20138510
LA  - en
ID  - MMNP_2013_8_5_a9
ER  - 
%0 Journal Article
%A A. Kazakov
%A N. Kulagin
%A L. Lerman
%T Dynamical Features in a Slow-fast Piecewise Linear Hamiltonian System
%J Mathematical modelling of natural phenomena
%D 2013
%P 155-172
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138510/
%R 10.1051/mmnp/20138510
%G en
%F MMNP_2013_8_5_a9
A. Kazakov; N. Kulagin; L. Lerman. Dynamical Features in a Slow-fast Piecewise Linear Hamiltonian System. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 155-172. doi : 10.1051/mmnp/20138510. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138510/

[1] G. L. Alfimov, V. M. Eleonsky, L. M. Lerman Chaos 1998 257 271

[2] C. J. Amick, K. Kirschgässner Arch. Ration. Mech. Anal. 1989 1 49

[3] C. J. Amick, J. B. Mcleod 1992 127 148

[4] V. I. Arnold, A. G. Givental. Symplectic geometry. In the book "Encyclopaedia of Mathematical Sciences", vol. 4, Springer-Verlag, Berlin-Heidelberg-New York.

[5] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt. Mathematical aspects of classical and celestial mechanics. Encycl. Math. Sci., 3, Springer-Verlag, New York-Berlin, 1993.

[6] M. di Bernardo, C. Budd, A. Champneys, P. Kowalzcyk. Piecewise-smooth Dynamical Systems. Theory and Applications. Springer-Verlag, New York, 2008.

[7] M. Di Bernardo, M. Feigin, S.J. Hogan, M.E. Homer Chaos, Solitons & Fractals 1999 1881 1908

[8] W. Eckhaus Singular perturbations of homoclinic orbits in R4 SIAM J. Math. Anal. 1992 1269 1290

[9] M. I. Feigin Prikl. Matem. Mekh. 1974 810 818

[10] M. I. Feigin Prikl. Matem. Mekh. 1978 820 829

[11] M. I. Feigin Journal of Appl. Maths. Mech. 1995 853 863

[12] M. I. Feigin. Forced Oscillations in Systems with Discontinuous Nonlinearities. Nauka P.H., Moscow, 1994 (in Russian).

[13] L. Lerman, V. Gelfreich J. Math. Sci. 2005 1445 1466

[14] C. Grotta Ragazzo Comm. Math. Phys. 1994 255 277

[15] A. Vanderbauwhede, B. Fiedler ZAMP 1992 291 318

[16] O. Yu. Koltsova, L. M. Lerman Int. J. Bifurcation & Chaos. 1995 397 408

[17]

[18] D. J. W. Simpson, J. D. Meiss Chaos 2009 033146

[19] A. Mielke, P. Holmes, O. O’Reilly J. Dyn. Different. Equat. 1992 95 126

[20] A. I. Neishtadt Appl. Math. Mech. 1984 197 204

[21] S. Smale. Diffeomorphisms with infinitely many periodic points. in "Differential and Combinatorial Topology," Ed. S. Cairns. Princeton Math. Ser., Princeton, NJ: Princeton Univ. Press, 63–80.

[22] L. P. Shilnikov USSR Math. Sb. 1967 415 443

Cité par Sources :