Voir la notice de l'article provenant de la source EDP Sciences
A. Kazakov 1 ; N. Kulagin 2 ; L. Lerman 1
@article{MMNP_2013_8_5_a9, author = {A. Kazakov and N. Kulagin and L. Lerman}, title = {Dynamical {Features} in a {Slow-fast} {Piecewise} {Linear} {Hamiltonian} {System}}, journal = {Mathematical modelling of natural phenomena}, pages = {155--172}, publisher = {mathdoc}, volume = {8}, number = {5}, year = {2013}, doi = {10.1051/mmnp/20138510}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138510/} }
TY - JOUR AU - A. Kazakov AU - N. Kulagin AU - L. Lerman TI - Dynamical Features in a Slow-fast Piecewise Linear Hamiltonian System JO - Mathematical modelling of natural phenomena PY - 2013 SP - 155 EP - 172 VL - 8 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138510/ DO - 10.1051/mmnp/20138510 LA - en ID - MMNP_2013_8_5_a9 ER -
%0 Journal Article %A A. Kazakov %A N. Kulagin %A L. Lerman %T Dynamical Features in a Slow-fast Piecewise Linear Hamiltonian System %J Mathematical modelling of natural phenomena %D 2013 %P 155-172 %V 8 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138510/ %R 10.1051/mmnp/20138510 %G en %F MMNP_2013_8_5_a9
A. Kazakov; N. Kulagin; L. Lerman. Dynamical Features in a Slow-fast Piecewise Linear Hamiltonian System. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 155-172. doi : 10.1051/mmnp/20138510. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138510/
[1] Chaos 1998 257 271
, ,[2] Arch. Ration. Mech. Anal. 1989 1 49
,[3]
, 1992 127 148[4] V. I. Arnold, A. G. Givental. Symplectic geometry. In the book "Encyclopaedia of Mathematical Sciences", vol. 4, Springer-Verlag, Berlin-Heidelberg-New York.
[5] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt. Mathematical aspects of classical and celestial mechanics. Encycl. Math. Sci., 3, Springer-Verlag, New York-Berlin, 1993.
[6] M. di Bernardo, C. Budd, A. Champneys, P. Kowalzcyk. Piecewise-smooth Dynamical Systems. Theory and Applications. Springer-Verlag, New York, 2008.
[7] Chaos, Solitons & Fractals 1999 1881 1908
, , ,[8] Singular perturbations of homoclinic orbits in R4 SIAM J. Math. Anal. 1992 1269 1290
[9] Prikl. Matem. Mekh. 1974 810 818
[10] Prikl. Matem. Mekh. 1978 820 829
[11] Journal of Appl. Maths. Mech. 1995 853 863
[12] M. I. Feigin. Forced Oscillations in Systems with Discontinuous Nonlinearities. Nauka P.H., Moscow, 1994 (in Russian).
[13] J. Math. Sci. 2005 1445 1466
,[14] Comm. Math. Phys. 1994 255 277
[15] ZAMP 1992 291 318
,[16] Int. J. Bifurcation & Chaos. 1995 397 408
,[17]
[18] Chaos 2009 033146
,[19] J. Dyn. Different. Equat. 1992 95 126
, ,[20] Appl. Math. Mech. 1984 197 204
[21] S. Smale. Diffeomorphisms with infinitely many periodic points. in "Differential and Combinatorial Topology," Ed. S. Cairns. Princeton Math. Ser., Princeton, NJ: Princeton Univ. Press, 63–80.
[22] USSR Math. Sb. 1967 415 443
Cité par Sources :