Voir la notice de l'article provenant de la source EDP Sciences
N.H. Ibragimov 1 ; R.N. Ibragimov 2
@article{MMNP_2013_8_5_a7, author = {N.H. Ibragimov and R.N. Ibragimov}, title = {Bifurcation of {Nonlinear} {Conservation} {Laws} from the {Classical} {Energy} {Conservation} {Law} for {Internal} {Gravity} {Waves} in {Cylindrical} {Wave} {Field}}, journal = {Mathematical modelling of natural phenomena}, pages = {119--130}, publisher = {mathdoc}, volume = {8}, number = {5}, year = {2013}, doi = {10.1051/mmnp/20138508}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138508/} }
TY - JOUR AU - N.H. Ibragimov AU - R.N. Ibragimov TI - Bifurcation of Nonlinear Conservation Laws from the Classical Energy Conservation Law for Internal Gravity Waves in Cylindrical Wave Field JO - Mathematical modelling of natural phenomena PY - 2013 SP - 119 EP - 130 VL - 8 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138508/ DO - 10.1051/mmnp/20138508 LA - en ID - MMNP_2013_8_5_a7 ER -
%0 Journal Article %A N.H. Ibragimov %A R.N. Ibragimov %T Bifurcation of Nonlinear Conservation Laws from the Classical Energy Conservation Law for Internal Gravity Waves in Cylindrical Wave Field %J Mathematical modelling of natural phenomena %D 2013 %P 119-130 %V 8 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138508/ %R 10.1051/mmnp/20138508 %G en %F MMNP_2013_8_5_a7
N.H. Ibragimov; R.N. Ibragimov. Bifurcation of Nonlinear Conservation Laws from the Classical Energy Conservation Law for Internal Gravity Waves in Cylindrical Wave Field. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 119-130. doi : 10.1051/mmnp/20138508. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138508/
[1] J. Nonlinear Sci. 2012 371 398
,[2] V. Andreev. O. Kaptsov. V. Pukhnachev, A. Rodionov. Applications of group theoretic methods in hydrodynamics. Novosibirsk, Nauka. (Russian). English translation by Kluwer Academic Publishers (1994).
[3] J. Math.Anal. Appl. 128 150
[4] A. Buchnev. Lie group admitted by the equations of motion of an ideal incompressible fluid. Continuum Dynamics. 7 (1971) pp. 212-214. Institute of Hydrodynamics, USSR Acad. Sci., Siberian Branch, Novosibirsk. (Russian).
[5] J. Atmosph. Sci. 50 1993 822 836
, ,[6] Geophys. Res. Lett. 1998 939 942
, , , ,[7] Geophys. Publ. 1950 1 52
[8] A. Gill. Atmosphere-Ocean Dynamics. New York, etc., Academic Press. 1983
[9] G.H. Haltiner, R.T. Williams. Numerical prediction and dynamic meteorology 1980.
[10] Ground Water. 2011 319 323
[11] Archives of ALGA 2010-2011 1 99
[12] N.H. Ibragimov. Nonlinear self-adjointness in constructing conservation laws. arXiv: 1109.1728v1[math-ph], (2011), 1-104.
[13] N.H. Ibragimov, R.N. Ibragimov. Rotationally symmetric internal gravity waves. J. Non-Linear Mech. (2011), doi:10.1017/j.ijnonlinmec.2011.08.011.
[14] Mechanics Research Communications 2011 261 266
, ,[15] J. Earth. Syst. Sci. 116 2007 331 339
,[16] J. Phys. A. 2010 495205
,[17] J. Phys. Oceanogr. 1983 241 254
,[18] Res. Lett. 2004 L18209
,[19] Annu. Rev. Fluid Mech. 2002 559 593
,[20] J. Phys. Oceanogr. 2002 2194 2203
,Cité par Sources :