Bifurcation of Nonlinear Conservation Laws from the Classical Energy Conservation Law for Internal Gravity Waves in Cylindrical Wave Field
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 119-130.

Voir la notice de l'article provenant de la source EDP Sciences

New conservation laws bifurcating from the classical form of conservation laws are constructed to the nonlinear Boussinesq model describing internal Kelvin waves propagating in a cylindrical wave field of an uniformly stratified water affected by the earth’s rotation. The obtained conservation laws are different from the well known energy conservation law for internal waves and they are associated with symmetries of the Boussinesq model. Particularly, it is shown that application of Lie group analysis provide three infinite sets of nontrivial integral conservation laws depending on two arbitrary functions, namely a(t, θ), b(t, r) and an arbitrary function c(t, θ, r) which is given implicitly as a nontrivial solution of a partial differential equation involving a(t, θ) and b(t, r).
DOI : 10.1051/mmnp/20138508

N.H. Ibragimov 1 ; R.N. Ibragimov 2

1 Department of Mathematics and Science Blekinge Institute of Technology, SE-371 79 Karlskrona, Sweden
2 Department of Mathematics University of Texas at Brownsville, TX 78520, USA
@article{MMNP_2013_8_5_a7,
     author = {N.H. Ibragimov and R.N. Ibragimov},
     title = {Bifurcation of {Nonlinear} {Conservation} {Laws} from the {Classical} {Energy} {Conservation} {Law} for {Internal} {Gravity} {Waves} in {Cylindrical} {Wave} {Field}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {119--130},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2013},
     doi = {10.1051/mmnp/20138508},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138508/}
}
TY  - JOUR
AU  - N.H. Ibragimov
AU  - R.N. Ibragimov
TI  - Bifurcation of Nonlinear Conservation Laws from the Classical Energy Conservation Law for Internal Gravity Waves in Cylindrical Wave Field
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 119
EP  - 130
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138508/
DO  - 10.1051/mmnp/20138508
LA  - en
ID  - MMNP_2013_8_5_a7
ER  - 
%0 Journal Article
%A N.H. Ibragimov
%A R.N. Ibragimov
%T Bifurcation of Nonlinear Conservation Laws from the Classical Energy Conservation Law for Internal Gravity Waves in Cylindrical Wave Field
%J Mathematical modelling of natural phenomena
%D 2013
%P 119-130
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138508/
%R 10.1051/mmnp/20138508
%G en
%F MMNP_2013_8_5_a7
N.H. Ibragimov; R.N. Ibragimov. Bifurcation of Nonlinear Conservation Laws from the Classical Energy Conservation Law for Internal Gravity Waves in Cylindrical Wave Field. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 119-130. doi : 10.1051/mmnp/20138508. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138508/

[1] A. Ali, H. Kalisch J. Nonlinear Sci. 2012 371 398

[2] V. Andreev. O. Kaptsov. V. Pukhnachev, A. Rodionov. Applications of group theoretic methods in hydrodynamics. Novosibirsk, Nauka. (Russian). English translation by Kluwer Academic Publishers (1994).

[3] S. Balasuriya J. Math.Anal. Appl. 128 150

[4] A. Buchnev. Lie group admitted by the equations of motion of an ideal incompressible fluid. Continuum Dynamics. 7 (1971) pp. 212-214. Institute of Hydrodynamics, USSR Acad. Sci., Siberian Branch, Novosibirsk. (Russian).

[5] H. Cho, T. Shepherd, V. Vladimirov J. Atmosph. Sci. 50 1993 822 836

[6] E. Dewan, R. Picard, R. O’Neil, H. Gardiner, J. Gibson Geophys. Res. Lett. 1998 939 942

[7] R. Fjortoft Geophys. Publ. 1950 1 52

[8] A. Gill. Atmosphere-Ocean Dynamics. New York, etc., Academic Press. 1983

[9] G.H. Haltiner, R.T. Williams. Numerical prediction and dynamic meteorology 1980.

[10] P.A. Hsieh Ground Water. 2011 319 323

[11] N.H. Ibragimov Archives of ALGA 2010-2011 1 99

[12] N.H. Ibragimov. Nonlinear self-adjointness in constructing conservation laws. arXiv: 1109.1728v1[math-ph], (2011), 1-104.

[13] N.H. Ibragimov, R.N. Ibragimov. Rotationally symmetric internal gravity waves. J. Non-Linear Mech. (2011), doi:10.1017/j.ijnonlinmec.2011.08.011.

[14] R.N. Ibragimov, N. Yilmaz, A.S. Bakhtiyarov Mechanics Research Communications 2011 261 266

[15] D. Nethery, D. Shankar J. Earth. Syst. Sci. 116 2007 331 339

[16] H. Kalisch, N.T. Nguyen J. Phys. A. 2010 495205

[17] R.D. Romea, J.S. Allen J. Phys. Oceanogr. 1983 241 254

[18] D.T. Shindell, G.A. Schmidt Res. Lett. 2004 L18209

[19] C. Staquet, J. Sommeria Annu. Rev. Fluid Mech. 2002 559 593

[20] R. Szoeke, R.M. Samelson J. Phys. Oceanogr. 2002 2194 2203

Cité par Sources :