Voir la notice de l'article provenant de la source EDP Sciences
S.V. Gonchenko 1 ; I.I. Ovsyannikov 1, 2
@article{MMNP_2013_8_5_a4, author = {S.V. Gonchenko and I.I. Ovsyannikov}, title = {On {Global} {Bifurcations} of {Three-dimensional} {Diffeomorphisms} {Leading} to {Lorenz-like} {Attractors}}, journal = {Mathematical modelling of natural phenomena}, pages = {71--83}, publisher = {mathdoc}, volume = {8}, number = {5}, year = {2013}, doi = {10.1051/mmnp/20138505}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138505/} }
TY - JOUR AU - S.V. Gonchenko AU - I.I. Ovsyannikov TI - On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors JO - Mathematical modelling of natural phenomena PY - 2013 SP - 71 EP - 83 VL - 8 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138505/ DO - 10.1051/mmnp/20138505 LA - en ID - MMNP_2013_8_5_a4 ER -
%0 Journal Article %A S.V. Gonchenko %A I.I. Ovsyannikov %T On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors %J Mathematical modelling of natural phenomena %D 2013 %P 71-83 %V 8 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138505/ %R 10.1051/mmnp/20138505 %G en %F MMNP_2013_8_5_a4
S.V. Gonchenko; I.I. Ovsyannikov. On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 71-83. doi : 10.1051/mmnp/20138505. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138505/
[1] Rus. Nonlinear Dynamics 2006 3 25
, ,[2] Rus. Math. Notes 1973 687 696
[3] I. Math. USSR Sbornik 1972 467 485
,[4] Proc. Steklov Inst. Math. 1997 70 118
, ,[5]
[6] Nonlinearity 2007 241 275
, ,[7] Nonlinearity 2008 923 972
, ,[8] Nonlinearity 2004 1217 1244
,[9] Nonlinearity 2013 1 33
, , , ,[10] Rus. Nonlinear Dynamics 2013 507 518
, ,[11] Bifurcation and Chaos 1996 919 948
[12] Regul. Chaotic Dyn. 2009 137 147
, ,[13] Bifurc. Chaos 2005 3493 3508
, , ,[14] Regular Chaotic Dyn. 2006 191 212
, ,[15] Sbornik Mathematics 1998 137 160
,[16] Russian Dokl. Math. 2008 17 21
,[17] Math. Model. Nat. Phenom. 2013 32 54
, , ,[18] L.P. Shilnikov, A.L. Shilnikov, D.V. Turaev, L.O. Chua. Methods of qualitative theory in nonlinear dynamics. Part I, World Scientific, 1998.
[19] Ukrainian Mathematical Journal 1990 134 140
,[20] AMS Transl. Math. 2000 107 134
[21] Russian Acad. Sci. Dokl. Math. 1993 268 283
, ,[22] Bifurc. Chaos 1993 1123 1139
, ,[23] A.L. Shilnikov. Bifurcation and chaos in the Marioka-Shimizu system. Methods of qualitative theory of differential equations, Gorky (1986), 180–193 [English translation in Selecta Math. Soviet., 10 (1991), 105–117]
[24] Physica D 1993 338 346
[25] Physica D: Nonlinear Phenomena 2011 985 989
,[26] Homoclinic tangencies, edited by S.V. Gonchenko and L.P. Shilnikov, Moscow-Izhevsk, 2007.
[27] S.V. Gonchenko, V.S. Gonchenko, L.P. Shilnikov. On homoclinic origin of Henon-like maps. Regular and Chaotic Dynamics, 4–5 (2010), 462–481.
[28] Physica D 2012 1115 1122
, ,[29] Physica D 1999 187 210
,[30] Proc. Steklov Inst. Math. 2004 80 105
,[31] Russ. Acad. Sci. Dokl. Math. 1993 410 415
, ,[32] Chaos 1996 15 31
, ,[33] J. Math. Sci. 2005 1317 1343
, ,[34] Regular and Chaotic Dynamics 2007 233 266
, ,Cité par Sources :