On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 71-83.

Voir la notice de l'article provenant de la source EDP Sciences

We study dynamics and bifurcations of three-dimensional diffeomorphisms with nontransversal heteroclinic cycles. We show that bifurcations under consideration lead to the birth of Lorenz-like attractors. They can be viewed as attractors in the Poincare map for periodically perturbed classical Lorenz attractors and hence they can allow for the existence of homoclinic tangencies and wild hyperbolic sets.
DOI : 10.1051/mmnp/20138505

S.V. Gonchenko 1 ; I.I. Ovsyannikov 1, 2

1 Research Institute of Applied Mathematics and Cybernetics, 10, Ulyanova Str., 603005 Nizhny Novgorod, Russia
2 Imperial College, SW7 2AZ London, UK
@article{MMNP_2013_8_5_a4,
     author = {S.V. Gonchenko and I.I. Ovsyannikov},
     title = {On {Global} {Bifurcations} of {Three-dimensional} {Diffeomorphisms} {Leading} to {Lorenz-like} {Attractors}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {71--83},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2013},
     doi = {10.1051/mmnp/20138505},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138505/}
}
TY  - JOUR
AU  - S.V. Gonchenko
AU  - I.I. Ovsyannikov
TI  - On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 71
EP  - 83
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138505/
DO  - 10.1051/mmnp/20138505
LA  - en
ID  - MMNP_2013_8_5_a4
ER  - 
%0 Journal Article
%A S.V. Gonchenko
%A I.I. Ovsyannikov
%T On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors
%J Mathematical modelling of natural phenomena
%D 2013
%P 71-83
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138505/
%R 10.1051/mmnp/20138505
%G en
%F MMNP_2013_8_5_a4
S.V. Gonchenko; I.I. Ovsyannikov. On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 71-83. doi : 10.1051/mmnp/20138505. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138505/

[1] S.V. Gonchenko, O.V. Sten’Kin, L.P. Shilnikov Rus. Nonlinear Dynamics 2006 3 25

[2] N.K. Gavrilov Rus. Math. Notes 1973 687 696

[3] N.K. Gavrilov, L.P. Shilnikov I. Math. USSR Sbornik 1972 467 485

[4] S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev Proc. Steklov Inst. Math. 1997 70 118

[5]

[6] S. Gonchenko, L. Shilnikov, D. Turaev Nonlinearity 2007 241 275

[7] S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev Nonlinearity 2008 923 972

[8] J.S.W. Lamb, O.V. Sten’Kin Nonlinearity 2004 1217 1244

[9] A. Delshams, S.V. Gonchenko, V.S. Gonchenko, J.T. Lazaro, O. Sten’Kin Nonlinearity 2013 1 33

[10] S.V. Gonchenko, A.S. Gonchenko, A.O. Kazakov Rus. Nonlinear Dynamics 2013 507 518

[11] D.V. Turaev Bifurcation and Chaos 1996 919 948

[12] S.V. Gonchenko, L. Shilnikov, D. Turaev Regul. Chaotic Dyn. 2009 137 147

[13] S.V. Gonchenko, I.I. Ovsyannikov, C. Simó, D. Turaev Bifurc. Chaos 2005 3493 3508

[14] S.V. Gonchenko, J.D. Meiss, I.I. Ovsyannikov Regular Chaotic Dyn. 2006 191 212

[15] D.V. Turaev, L.P. Shilnikov Sbornik Mathematics 1998 137 160

[16] D.V. Turaev, L.P. Shilnikov Russian Dokl. Math. 2008 17 21

[17] S.V. Gonchenko, A.S. Gonchenko, I.I. Ovsyannikov, D.V. Turaev Math. Model. Nat. Phenom. 2013 32 54

[18] L.P. Shilnikov, A.L. Shilnikov, D.V. Turaev, L.O. Chua. Methods of qualitative theory in nonlinear dynamics. Part I, World Scientific, 1998.

[19] S.V. Gonchenko, L.P. Shilnikov Ukrainian Mathematical Journal 1990 134 140

[20] S.V. Gonchenko AMS Transl. Math. 2000 107 134

[21] S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev Russian Acad. Sci. Dokl. Math. 1993 268 283

[22] A.L. Shilnikov, L.P. Shilnikov, D.V. Turaev Bifurc. Chaos 1993 1123 1139

[23] A.L. Shilnikov. Bifurcation and chaos in the Marioka-Shimizu system. Methods of qualitative theory of differential equations, Gorky (1986), 180–193 [English translation in Selecta Math. Soviet., 10 (1991), 105–117]

[24] A.L. Shilnikov Physica D 1993 338 346

[25] G. Tigan, D. Turaev Physica D: Nonlinear Phenomena 2011 985 989

[26] Homoclinic tangencies, edited by S.V. Gonchenko and L.P. Shilnikov, Moscow-Izhevsk, 2007.

[27] S.V. Gonchenko, V.S. Gonchenko, L.P. Shilnikov. On homoclinic origin of Henon-like maps. Regular and Chaotic Dynamics, 4–5 (2010), 462–481.

[28] S.V. Gonchenko, I.I. Ovsyannikov, D.V. Turaev Physica D 2012 1115 1122

[29] V. Rom-Kedar, D. Turaev Physica D 1999 187 210

[30] S.V. Gonchenko, V.S. Gonchenko Proc. Steklov Inst. Math. 2004 80 105

[31] S.V. Gonchenko, D.V. Turaev, L.P. Shilnikov Russ. Acad. Sci. Dokl. Math. 1993 410 415

[32] S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev Chaos 1996 15 31

[33] S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev J. Math. Sci. 2005 1317 1343

[34] S.V. Gonchenko, V.S. Gonchenko, J.C. Tatjer Regular and Chaotic Dynamics 2007 233 266

Cité par Sources :