Examples of Lorenz-like Attractors in Hénon-like Maps
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 48-70.

Voir la notice de l'article provenant de la source EDP Sciences

We display a gallery of Lorenz-like attractors that emerge in a class of three-dimensional maps. We review the theory of Lorenz-like attractors for diffeomorphisms (as opposed to flows), define various types of such attractors, and find sufficient conditions for three-dimensional Henon-like maps to possess pseudohyperbolic Lorenz-like attractors. The numerically obtained scenarios of the creation and destruction of these attractors are also presented.
DOI : 10.1051/mmnp/20138504

S.V. Gonchenko 1 ; A.S. Gonchenko 1 ; I.I. Ovsyannikov 1, 2 ; D.V. Turaev 2

1 Research Institute of Applied Mathematics and Cybernetics, 10, Ulyanova Str. 603005 Nizhny Novgorod, Russia
2 Imperial College, SW7 2 AZ London, UK
@article{MMNP_2013_8_5_a3,
     author = {S.V. Gonchenko and A.S. Gonchenko and I.I. Ovsyannikov and D.V. Turaev},
     title = {Examples of {Lorenz-like} {Attractors} in {H\'enon-like} {Maps}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {48--70},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2013},
     doi = {10.1051/mmnp/20138504},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138504/}
}
TY  - JOUR
AU  - S.V. Gonchenko
AU  - A.S. Gonchenko
AU  - I.I. Ovsyannikov
AU  - D.V. Turaev
TI  - Examples of Lorenz-like Attractors in Hénon-like Maps
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 48
EP  - 70
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138504/
DO  - 10.1051/mmnp/20138504
LA  - en
ID  - MMNP_2013_8_5_a3
ER  - 
%0 Journal Article
%A S.V. Gonchenko
%A A.S. Gonchenko
%A I.I. Ovsyannikov
%A D.V. Turaev
%T Examples of Lorenz-like Attractors in Hénon-like Maps
%J Mathematical modelling of natural phenomena
%D 2013
%P 48-70
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138504/
%R 10.1051/mmnp/20138504
%G en
%F MMNP_2013_8_5_a3
S.V. Gonchenko; A.S. Gonchenko; I.I. Ovsyannikov; D.V. Turaev. Examples of Lorenz-like Attractors in Hénon-like Maps. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 48-70. doi : 10.1051/mmnp/20138504. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138504/

[1] S.V. Gonchenko, I.I. Ovsyannikov, C. Simó, D. Turaev Bifurcation and Chaos 2005 3493 3508

[2] V.S. Afraimovich, V.V. Bykov, L.P. Shilnikov Sov. Phys. Dokl. 1977 253 255

[3] V.S. Afraimovich, V.V. Bykov, L.P. Shilnikov Trans. Mosc. Math. Soc. 1982 153 216

[4] J. Guckenheimer. A strange, strange attractor. In The Hopf Bifurcation Theorem and its Applications, eds. J. Marsden and M. McCracken, Springer-Verlag, 1976, 368–381.

[5] J. Guckenheimer, R.F. Williams IHES Publ. Math. 1979 59 72

[6] R.F. Williams IHES Publ. Math. 1979 73 79

[7] L.A. Bunimovich, Ya.G. Sinai. Stochasticity of the attractor in the Lorenz model. In Nonlinear Waves (Proc. Winter School, Moscow), Nauka, 1980, 212–226.

[8] C. Robinson Lect. Notes Math. 1981 302 315

[9] V.S. Aframovich, L.P. Shilnikov. Strange attractors and quasiattractors. in Nonlinear Dynamics and Turbulence, eds. G.I.Barenblatt, G.Iooss, D.D.Joseph, Boston, Pitmen, 1983.

[10] S.E. Newhouse Proc. A.M.S. Symp. in Pure Math. 1970 191 202

[11] S.E. Newhouse Topology 1974 9 18

[12] S.E. Newhouse IHES Publ. Math. 1979 101 151

[13] M. Benedicks, L. Carleson Ann. Math. 1991 73 169

[14] L. Mora, M. Viana Acta Math. 1993 1 71

[15] Q.D. Wang, L.-S. Young Commun. Math. Phys. 2001 1 97

[16] R. Ures Ergod. Th. Dyn. Sys. 1995 1223 1229

[17] A.S. Gonchenko, S.V. Gonchenko Rus. J. Nonlin. Dyn. 2013 77 89

[18] D.V. Turaev, L.P. Shilnikov Sb. Math. 1998 291 314

[19] D.V. Turaev, L.P. Shilnikov Russian Dokl. Math. 2008 23 27

[20] T. Shimizu, N. Morioka Phys. Lett. A 1980 201 204

[21]

[22] A.L. Shilnikov Physica D 1993 338 346

[23] A.L. Shilnikov, L.P. Shilnikov, D.V. Turaev Bifurcation and Chaos 1993 1123 1139

[24] H.W.E. Jung J. Reine Angew. Math. 1942 161 174

[25] S. Friedland, J. Milnor Ergod. Th. Dyn. Sys. 1989 67 99

[26] A.J. Dragt, D.T. Abell. Symplectic maps and computation of orbits in particle accelerators. In Integration algorithms and classical mechanics (Toronto, ON, 1993), Amer. Math. Soc., Providence, RI, 1996, 59–85.

[27] H.E. Lomeli, J.D. Meiss Nonlinearity 1998 557 574

[28] S.V. Gonchenko, V.S. Gonchenko, L.P. Shilnikov Regul. Chaotic Dyn. 2010 462 481

[29] L. Tedeschini-Lalli, J.A. Yorke Commun. Math. Phys. 1986 635 657

[30] M. Henon Commun. Math. Phys. 1976 69 77

[31] N.K. Gavrilov, L.P. Shilnikov I. Math. USSR Sbornik 1972 467 485

[32] S.V. Gonchenko, D.V. Turaev, L.P. Shilnikov Sov. Math., Dokl. 1992 422 426

[33] S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev Physica D 1993 1 14

[34] S.V. Gonchenko, D.V. Turaev, L.P. Shilnikov Russ. Acad. Sci. Dokl. Math. 1993 410 415

[35] S.V. Gonchenko, D.V. Turaev, L.P. Shilnikov Russian Acad. Sci.Dokl.Math. 1993 268 283

[36] J. Palis, M. Viana Ann. Math. 1994 91 136

[37] N. Romero Ergod. Th. Dyn. Sys. 1995 735 757

[38] E. Colli Ann. IHP, Anal. Non Lineaire 1998 539 579

[39] J.C. Tatjer Ergod. Th. Dyn. Systems 2001 249 302

[40] A.R. Champneys, J. Haerterich, B. Sandstede Ergod. Th. Dyn. Sys. 1996 431 450

[41] D.V. Turaev D.V. Bifurcation and Chaos 1996 919 948

[42] S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev Chaos 1996 15 31

[43] S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev Proc. Steklov Inst. Math. 1997 70 118

[44] S.V. Gonchenko, D.V. Turaev, L.P. Shilnikov Comput. Math. Appl. 1997 195 227

[45] S.V. Gonchenko, D.V. Turaev, L.P. Shilnikov In Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh. 1999 69 128

[46] S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev Contemprary Mathematics and Its Applications 2003 92 118

[47] S. Gonchenko, L. Shilnikov, D. Turaev Nonlinearity 2007 241 275

[48] S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev Nonlinearity 2008 923 972

[49] S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev. On dynamical properties of multidimensional diffeomorphisms from Newhouse regions. II. submitted to Nonlinearity (2013).

[50] S.V. Gonchenko, I.I. Ovsyannikov, D. Turaev Physica D 2012 1115 1122

[51] S.V.Gonchenko, V.S.Gonchenko. On Andronov-Hopf bifurcations of two-dimensional diffeomorphisms with homoclinic tangencies. preprint WIAS No.556, Berlin, 2000.

[52] S.V. Gonchenko, V.S. Gonchenko Proc. Steklov Inst. Math. 2004 80 105

[53] V.S. Gonchenko, Yu.A. Kuznetsov, H.G.E. Meijer SIAM J. Appl. Dyn. Sys. 2005 407 436

[54] S.V. Gonchenko, O.V. Sten’Kin, L.P. Shilnikov Rus. J. Nonlinear Dynamics 2006 3 25

[55] S.V. Gonchenko, V.S. Gonchenko, J.C. Tatjer Regul. Chaotic Dyn. 2007 233 266

[56] V.S. Gonchenko, L.P. Shilnikov Russian Dokl. Math. 2007 929 933

[57] A. Gonchenko, S. Gonchenko Rus. Nonlinear Dynamics 2007 423 433

[58] S. Gonchenko, M.-C. Li, M. Malkin Bifurcation and Chaos 2008 3029 3052

[59] A. Gonchenko, S. Gonchenko, M. Malkin Rus. Nonlinear Dynamics 2010 549 566

[60] V.S. Biragov. Bifurcations in two-parameter family of conservative mappings that are close to the Hénon map. Methods of Qualitative Theory and Theory of Bifurcations, Gorky, 1987, 10–24 [English translation in Selecta Math. Sov., 9 (1990), 273–282].

[61] V. Biragov, L. Shilnikov. On the bifurcation of a saddle-focus separatrix Loop in a three-dimensional conservative dynamical system. Methods of Qualitative Theory and Theory of Bifurcations, Gorky, 1989, 25–34 [English translation in Selecta Math. Soviet., 11 (1992), 333–340].

[62] L. Mora, N. Romero Dyn. Sys. Appl. 1997 29 42

[63] P. Duarte Dynam. Stability Systems 1999 339 356

[64] P. Duarte Ergod. Th. Dyn. Sys. 2000 393 438

[65] P. Duarte Ergod. Th. Dyn. Sys. 2008 1781 1813

[66] V. Rom-Kedar, D. Turaev Physica D 1999 187 210

[67] D. Turaev, V. Rom-Kedar J. Stat. Phys. 2003 765 813

[68] S.V. Gonchenko, L.P. Shilnikov Regul. Chaotic Dyn. 1997 106 123

[69] S.V. Gonchenko, L.P. Shilnikov J. Stat. Phys. 2000 321 356

[70] S.V. Gonchenko, L.P. Shilnikov Notes Sci. seminars PDMI 2003

[71] M.S. Gonchenko Bifurcation and Chaos 2005 3653 3660

[72] M.S. Gonchenko, S.V. Gonchenko Regul. Chaotic Dyn. 2009 116 136

[73] A. Gorodetski, V. Kaloshin Proc. Steklov Inst. Math. 2009 76 90

[74] J.S.W. Lamb, O.V. Sten’Kin Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits Nonlinearity 2004 1217 1244

[75] S.V. Gonchenko, L.P. Shilnikov, D. Turaev Regul. Chaotic Dyn. 1998 3 26

[76] S.V. Gonchenko, D.V. Turaev, L.P. Shilnikov Proc. Steklov Inst. Math. 2004 106 131

[77] S.V. Gonchenko, J.D. Meiss, I.I. Ovsyannikov Regul. Chaotic Dyn. 2006 191 212

[78] S.V. Gonchenko, L. Shilnikov, D. Turaev Regul. Chaotic Dyn. 2009 137 147

[79] S.V. Gonchenko, I.I. Ovsyannikov Rus. J. Nonlinear Dynamics 2010 61 77

[80] D. Turaev Nonlinearity 2003 123 135

[81] D.Turaev. Maps close to identity and universal maps in the Newhouse domain. preprint arXiv:1009.0858, 2010.

[82] A. Delshams, S.V. Gonchenko, V.S. Gonchenko, J.T. Lazaro, O. Sten’Kin Nonlinearity 2013 1 33

[83] Homoclinic Tangencies, eds. S.V.Gonchenko and L.P.Shilnikov, Regular and Chaotic Dynamics, Moscow-Izhevsk, 2007.

[84]

[85] V.S. Afraimovich, L.P. Shilnikov Soviet Math., Dokl. 1974 206 211

[86] V.S. Afraimovich, L.P. Shilnikov Soviet. Math., Dokl. 1974 1761 1765

[87] V.S. Afraimovich, L.P. Shilnikov J. Appl. Math. Mech. 1977 632 641

[88] J.H. Curry, J.A. Yorke. A transition from Hopf bifurcation to chaos: computer experiments with maps in R2. In The Structure of Attractors in Dynamical Systems, eds. J.C. Martin, N.G. Markley, W. Perrizo, Lecture Notes Math., 668, Springer, Berlin, 1978, 48–66.

[89] D.G. Aronson, M.A. Chory, R.P. Mcgehee, G.R. Hall Commun. Math. Phys. 1982 303 354

[90] V.S. Afraimovich, L.P. Shilnikov. On invariant two-dimensional tori, their breakdown and stochasticity. Methods of the Qualitative Theory of Differential Equations, Gorky, 1983, 3–26 [English translation in: Amer. Math. Soc. Transl., 149 (1991), 201–212].

[91] A. Shilnikov, L. Shilnikov, D. Turaev Bifurcation and Chaos 2004 2143 2160

[92] A.S. Gonchenko, S.V. Gonchenko, L.P. Shilnikov Rus. J. Nonlinear Dynamics 2012 3 28

[93] A.V. Borisov, A.Yu. Jalnine, S.P. Kuznetsov, I.R. Sataev, J.V. Sedova Regul. Chaotic Dyn. 2012 512 532

[94] C. Bonatti Proceedings of the ICM, Beijing 2002 279 294

[95] C. Bonatti, L. Diaz, E.R. Pujals Ann. Math. 2003 355 418

[96] C. Bonatti, L. Diaz, M. Viana. Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective. Encyclopaedia of Mathematical Sciences, V. 102, Springer, 2005.

[97] C. Morales, E.R. Pujals Ann. Sci. Ecole Norm. Sup. 1997 693 717

[98] V. Araujo, M.J. Pacifico. Three-Dimensional Flows. Springer, 2010.

[99] S. Luzzatto, I. Melbourne, F. Paccaut Comm. Math. Phys. 2005 393 401

[100] Ya. B. Pesin Ergod. Th. Dyn. Sys. 1992 123 151

[101] E.A. Sataev Russ. Math. Surv. 1992 191 251

[102] V.S. Afraimovich, N.I. Chernov, E.A. Sataev Chaos 1995 238 252

[103] C. Bonatti, A. Pumarino, M. Viana C.R. Acad. Sci. Paris 1997 883 888

[104] J. Auslander, P. Seibert Ann. Inst. Forier., Genoble 1964 237 268

[105] J. Auslander, N.P. Bhatia, P. Seibert Bol. Soc. Mat. Mex. 1964 55 66

[106] J. Milnor Comm. Math. Phys. 1985 177 195

[107] A. Gorodetski, Yu. Ilyashenko Bifurcation and Chaos 1996 1177 1183

[108] C. Robinson Qualitative Theory Dyn. Sys. 2008 227 236

[109] C. Conley.Isolated Invariant Sets and the Morse Index. CBMS Regional Conference Series Math., 38 (1978), Am. Math. Soc., Providence RI.

[110] D. Ruelle Comm. Math. Phys. 1981 137 151

[111] M. Hurley Trans. Amer. Math. Soc. 1982 247 271

[112] V.A. Dobrynsky, A.N. Sharkovsky. Genericity of the dynamical systems, almost all trajectories of which are stable underconstantly acting perturbations. Soviet. Math. Dokl., 211 (1973).

[113] E.A. Sataev Sb. Math. 2005 561 594

[114] R. Bamon, J. Kiwi, J. Rivera. Wild Lorenz like attractors. Preprint (2005), arXiv:math/0508045.

[115] L.J. Diaz, J. Rocha Nonlinearity 1992 1315 1341

[116] L.J. Diaz Persistence of cycles and nonhyperbolic dynamics at heteroclinic bifurcations Nonlinearity 1995 693 713

[117] Ch. Bonatti, L.J. Diaz Ann. Math. 1996 367 396

[118] C. Bonatti, L.J. Diaz, E. Pujals, J. Rocha Asterisque 2003 187 222

[119] Ch. Bonatti, L.J. Diaz J. Inst. of Math. Jussieu 2008 469 525

[120] L.J. Diaz, A. Gorodetski Ergod. Th. Dyn. Sys. 2009 479 513

[121] L.P. Silnikov Sov. Math. Dokl. 1968 624 628

[122] V.S. Afrajmovich, L.P. Shil’Nikov Sov. Math. Dokl. 1982 101 105

[123] A. Gorodetski, Yu. Ilyashenko Functional Analysis and Applications 1999 16 30

[124] A. Gorodetski, Yu. Ilyashenko Proc. Steklov Inst. Math. 2000 96 118

[125] A. Gorodetski, Yu. Ilyashenko, V. Kleptsyn, M. Nalskij Functional Analysis and Applications 2005 27 38

[126] V.N. Pisarevsky, A. Shilnikov, D. Turaev Regul. Chaotic Dyn. 1998 19 27

[127] L.P. Shilnikov Russ. Math. Survey 1981 240 241

[128] C. Robinson Nonlinearity 1989 495 518

[129] M. Rychlic Ergod. Th. Dyn. Sys. 1990 793 821

[130] G. Tigan, D. Turaev Physica D 2011 985 989

[131] V.V. Bykov. On the structure of a neighborhood of a separatrix contour with a saddle-focus. Methods of the Qualitative Theory of Differencial Equations, Gorky, 1978, 3–32.

[132] V.V. Bykov. On bifurcations of dynamical systems close to systems with a separatrix contour containing a saddle-focus. Methods of the Qualitative Theory of Differencial Equations, Gorky, 1980, 44–72.

[133] V.V. Bykov Physica D 1993 290 299

[134] N.V. Petrovskaya, V.I. Yudovich. Homoclinic loops of the Saltzman-Lorenz system. Methods of qualitative theory of differential equations, Gorky, 1980, 73–83.

[135] V.V. Bykov, A.L. Shilnikov. On the boundaries of the domain of existence of the Lorenz attractor. Methods of qualitative theory and bifurcation theory, Gorky, 1989, 151–159 [English translation in Selecta Math. Soviet., 11 (1992), 375–382].

[136] V.S. Afraimovich, V.V. Bykov, L.P. Shilnikov Russ. Math. Survey 1980 164 165

[137] A. Chenciner IHES Publ. Math. 1985 67 127

[138] J.E. Los Nonlinearity 1989 149 174

[139] H.W. Broer, G.B. Huitema, F. Takens Mem. AMS 1990 1 82

[140] B.L.J. Braaksma, H.W. Broer, G.B. Huitema Mem. AMS 1990 83 175

[141] A. Arneodo, P.H. Coullet, E.A. Spiegel Phys. Lett. A 1983 1 5

[142] V. Franceschini Physica D 1983 285 304

[143] V.S. Anishchenko, V.V. Astakhov, T.E. Letchford, M.A. Safonova Structure of the quasihyperbolic stochasticity in an inertial self-excited oscillator Radiophysics and Quantum Electronics 1983 619 628

[144] V.S. Anishenko. Complex oscillations in simple systems. Nauka, Moscow, 1990.

[145] K. Kaneko. Collapse of Tori and Genesis of Chaos in Dissipative Systems. World Scientific, Singapore, 1986.

[146] C. Bonatti, Y. Shi, Robustly transitive attractor derived from Lorenz, in preparation.

Cité par Sources :