Voir la notice de l'article provenant de la source EDP Sciences
S.V. Gonchenko 1 ; A.S. Gonchenko 1 ; I.I. Ovsyannikov 1, 2 ; D.V. Turaev 2
@article{MMNP_2013_8_5_a3, author = {S.V. Gonchenko and A.S. Gonchenko and I.I. Ovsyannikov and D.V. Turaev}, title = {Examples of {Lorenz-like} {Attractors} in {H\'enon-like} {Maps}}, journal = {Mathematical modelling of natural phenomena}, pages = {48--70}, publisher = {mathdoc}, volume = {8}, number = {5}, year = {2013}, doi = {10.1051/mmnp/20138504}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138504/} }
TY - JOUR AU - S.V. Gonchenko AU - A.S. Gonchenko AU - I.I. Ovsyannikov AU - D.V. Turaev TI - Examples of Lorenz-like Attractors in Hénon-like Maps JO - Mathematical modelling of natural phenomena PY - 2013 SP - 48 EP - 70 VL - 8 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138504/ DO - 10.1051/mmnp/20138504 LA - en ID - MMNP_2013_8_5_a3 ER -
%0 Journal Article %A S.V. Gonchenko %A A.S. Gonchenko %A I.I. Ovsyannikov %A D.V. Turaev %T Examples of Lorenz-like Attractors in Hénon-like Maps %J Mathematical modelling of natural phenomena %D 2013 %P 48-70 %V 8 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138504/ %R 10.1051/mmnp/20138504 %G en %F MMNP_2013_8_5_a3
S.V. Gonchenko; A.S. Gonchenko; I.I. Ovsyannikov; D.V. Turaev. Examples of Lorenz-like Attractors in Hénon-like Maps. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 5, pp. 48-70. doi : 10.1051/mmnp/20138504. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138504/
[1] Bifurcation and Chaos 2005 3493 3508
, , ,[2] Sov. Phys. Dokl. 1977 253 255
, ,[3] Trans. Mosc. Math. Soc. 1982 153 216
, ,[4] J. Guckenheimer. A strange, strange attractor. In The Hopf Bifurcation Theorem and its Applications, eds. J. Marsden and M. McCracken, Springer-Verlag, 1976, 368–381.
[5] IHES Publ. Math. 1979 59 72
,[6] IHES Publ. Math. 1979 73 79
[7] L.A. Bunimovich, Ya.G. Sinai. Stochasticity of the attractor in the Lorenz model. In Nonlinear Waves (Proc. Winter School, Moscow), Nauka, 1980, 212–226.
[8] Lect. Notes Math. 1981 302 315
[9] V.S. Aframovich, L.P. Shilnikov. Strange attractors and quasiattractors. in Nonlinear Dynamics and Turbulence, eds. G.I.Barenblatt, G.Iooss, D.D.Joseph, Boston, Pitmen, 1983.
[10] Proc. A.M.S. Symp. in Pure Math. 1970 191 202
[11] Topology 1974 9 18
[12] IHES Publ. Math. 1979 101 151
[13] Ann. Math. 1991 73 169
,[14] Acta Math. 1993 1 71
,[15] Commun. Math. Phys. 2001 1 97
,[16] Ergod. Th. Dyn. Sys. 1995 1223 1229
[17] Rus. J. Nonlin. Dyn. 2013 77 89
,[18] Sb. Math. 1998 291 314
,[19] Russian Dokl. Math. 2008 23 27
,[20] Phys. Lett. A 1980 201 204
,[21]
[22] Physica D 1993 338 346
[23] Bifurcation and Chaos 1993 1123 1139
, ,[24] J. Reine Angew. Math. 1942 161 174
[25] Ergod. Th. Dyn. Sys. 1989 67 99
,[26] A.J. Dragt, D.T. Abell. Symplectic maps and computation of orbits in particle accelerators. In Integration algorithms and classical mechanics (Toronto, ON, 1993), Amer. Math. Soc., Providence, RI, 1996, 59–85.
[27] Nonlinearity 1998 557 574
,[28] Regul. Chaotic Dyn. 2010 462 481
, ,[29] Commun. Math. Phys. 1986 635 657
,[30] Commun. Math. Phys. 1976 69 77
[31] I. Math. USSR Sbornik 1972 467 485
,[32] Sov. Math., Dokl. 1992 422 426
, ,[33] Physica D 1993 1 14
, ,[34] Russ. Acad. Sci. Dokl. Math. 1993 410 415
, ,[35] Russian Acad. Sci.Dokl.Math. 1993 268 283
, ,[36] Ann. Math. 1994 91 136
,[37] Ergod. Th. Dyn. Sys. 1995 735 757
[38] Ann. IHP, Anal. Non Lineaire 1998 539 579
[39] Ergod. Th. Dyn. Systems 2001 249 302
[40] Ergod. Th. Dyn. Sys. 1996 431 450
, ,[41] Bifurcation and Chaos 1996 919 948
[42] Chaos 1996 15 31
, ,[43] Proc. Steklov Inst. Math. 1997 70 118
, ,[44] Comput. Math. Appl. 1997 195 227
, ,[45] In Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh. 1999 69 128
, ,[46] Contemprary Mathematics and Its Applications 2003 92 118
, ,[47] Nonlinearity 2007 241 275
, ,[48] Nonlinearity 2008 923 972
, ,[49] S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev. On dynamical properties of multidimensional diffeomorphisms from Newhouse regions. II. submitted to Nonlinearity (2013).
[50] Physica D 2012 1115 1122
, ,[51] S.V.Gonchenko, V.S.Gonchenko. On Andronov-Hopf bifurcations of two-dimensional diffeomorphisms with homoclinic tangencies. preprint WIAS No.556, Berlin, 2000.
[52] Proc. Steklov Inst. Math. 2004 80 105
,[53] SIAM J. Appl. Dyn. Sys. 2005 407 436
, ,[54] Rus. J. Nonlinear Dynamics 2006 3 25
, ,[55] Regul. Chaotic Dyn. 2007 233 266
, ,[56] Russian Dokl. Math. 2007 929 933
,[57] Rus. Nonlinear Dynamics 2007 423 433
,[58] Bifurcation and Chaos 2008 3029 3052
, ,[59] Rus. Nonlinear Dynamics 2010 549 566
, ,[60] V.S. Biragov. Bifurcations in two-parameter family of conservative mappings that are close to the Hénon map. Methods of Qualitative Theory and Theory of Bifurcations, Gorky, 1987, 10–24 [English translation in Selecta Math. Sov., 9 (1990), 273–282].
[61] V. Biragov, L. Shilnikov. On the bifurcation of a saddle-focus separatrix Loop in a three-dimensional conservative dynamical system. Methods of Qualitative Theory and Theory of Bifurcations, Gorky, 1989, 25–34 [English translation in Selecta Math. Soviet., 11 (1992), 333–340].
[62] Dyn. Sys. Appl. 1997 29 42
,[63] Dynam. Stability Systems 1999 339 356
[64] Ergod. Th. Dyn. Sys. 2000 393 438
[65] Ergod. Th. Dyn. Sys. 2008 1781 1813
[66] Physica D 1999 187 210
,[67] J. Stat. Phys. 2003 765 813
,[68] Regul. Chaotic Dyn. 1997 106 123
,[69] J. Stat. Phys. 2000 321 356
,[70] Notes Sci. seminars PDMI 2003
,[71] Bifurcation and Chaos 2005 3653 3660
[72] Regul. Chaotic Dyn. 2009 116 136
,[73] Proc. Steklov Inst. Math. 2009 76 90
,[74] Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits Nonlinearity 2004 1217 1244
,[75] Regul. Chaotic Dyn. 1998 3 26
, ,[76] Proc. Steklov Inst. Math. 2004 106 131
, ,[77] Regul. Chaotic Dyn. 2006 191 212
, ,[78] Regul. Chaotic Dyn. 2009 137 147
, ,[79] Rus. J. Nonlinear Dynamics 2010 61 77
,[80] Nonlinearity 2003 123 135
[81] D.Turaev. Maps close to identity and universal maps in the Newhouse domain. preprint arXiv:1009.0858, 2010.
[82] Nonlinearity 2013 1 33
, , , ,[83] Homoclinic Tangencies, eds. S.V.Gonchenko and L.P.Shilnikov, Regular and Chaotic Dynamics, Moscow-Izhevsk, 2007.
[84]
[85] Soviet Math., Dokl. 1974 206 211
,[86] Soviet. Math., Dokl. 1974 1761 1765
,[87] J. Appl. Math. Mech. 1977 632 641
,[88] J.H. Curry, J.A. Yorke. A transition from Hopf bifurcation to chaos: computer experiments with maps in R2. In The Structure of Attractors in Dynamical Systems, eds. J.C. Martin, N.G. Markley, W. Perrizo, Lecture Notes Math., 668, Springer, Berlin, 1978, 48–66.
[89] Commun. Math. Phys. 1982 303 354
, , ,[90] V.S. Afraimovich, L.P. Shilnikov. On invariant two-dimensional tori, their breakdown and stochasticity. Methods of the Qualitative Theory of Differential Equations, Gorky, 1983, 3–26 [English translation in: Amer. Math. Soc. Transl., 149 (1991), 201–212].
[91] Bifurcation and Chaos 2004 2143 2160
, ,[92] Rus. J. Nonlinear Dynamics 2012 3 28
, ,[93] Regul. Chaotic Dyn. 2012 512 532
, , , ,[94] Proceedings of the ICM, Beijing 2002 279 294
[95] Ann. Math. 2003 355 418
, ,[96] C. Bonatti, L. Diaz, M. Viana. Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective. Encyclopaedia of Mathematical Sciences, V. 102, Springer, 2005.
[97] Ann. Sci. Ecole Norm. Sup. 1997 693 717
,[98] V. Araujo, M.J. Pacifico. Three-Dimensional Flows. Springer, 2010.
[99] Comm. Math. Phys. 2005 393 401
, ,[100] Ergod. Th. Dyn. Sys. 1992 123 151
[101] Russ. Math. Surv. 1992 191 251
[102] Chaos 1995 238 252
, ,[103] C.R. Acad. Sci. Paris 1997 883 888
, ,[104] Ann. Inst. Forier., Genoble 1964 237 268
,[105] Bol. Soc. Mat. Mex. 1964 55 66
, ,[106] Comm. Math. Phys. 1985 177 195
[107] Bifurcation and Chaos 1996 1177 1183
,[108] Qualitative Theory Dyn. Sys. 2008 227 236
[109] C. Conley.Isolated Invariant Sets and the Morse Index. CBMS Regional Conference Series Math., 38 (1978), Am. Math. Soc., Providence RI.
[110] Comm. Math. Phys. 1981 137 151
[111] Trans. Amer. Math. Soc. 1982 247 271
[112] V.A. Dobrynsky, A.N. Sharkovsky. Genericity of the dynamical systems, almost all trajectories of which are stable underconstantly acting perturbations. Soviet. Math. Dokl., 211 (1973).
[113] Sb. Math. 2005 561 594
[114] R. Bamon, J. Kiwi, J. Rivera. Wild Lorenz like attractors. Preprint (2005), arXiv:math/0508045.
[115] Nonlinearity 1992 1315 1341
,[116] Persistence of cycles and nonhyperbolic dynamics at heteroclinic bifurcations Nonlinearity 1995 693 713
[117] Ann. Math. 1996 367 396
,[118] Asterisque 2003 187 222
, , ,[119] J. Inst. of Math. Jussieu 2008 469 525
,[120] Ergod. Th. Dyn. Sys. 2009 479 513
,[121] Sov. Math. Dokl. 1968 624 628
[122] Sov. Math. Dokl. 1982 101 105
,[123] Functional Analysis and Applications 1999 16 30
,[124] Proc. Steklov Inst. Math. 2000 96 118
,[125] Functional Analysis and Applications 2005 27 38
, , ,[126] Regul. Chaotic Dyn. 1998 19 27
, ,[127] Russ. Math. Survey 1981 240 241
[128] Nonlinearity 1989 495 518
[129] Ergod. Th. Dyn. Sys. 1990 793 821
[130] Physica D 2011 985 989
,[131] V.V. Bykov. On the structure of a neighborhood of a separatrix contour with a saddle-focus. Methods of the Qualitative Theory of Differencial Equations, Gorky, 1978, 3–32.
[132] V.V. Bykov. On bifurcations of dynamical systems close to systems with a separatrix contour containing a saddle-focus. Methods of the Qualitative Theory of Differencial Equations, Gorky, 1980, 44–72.
[133] Physica D 1993 290 299
[134] N.V. Petrovskaya, V.I. Yudovich. Homoclinic loops of the Saltzman-Lorenz system. Methods of qualitative theory of differential equations, Gorky, 1980, 73–83.
[135] V.V. Bykov, A.L. Shilnikov. On the boundaries of the domain of existence of the Lorenz attractor. Methods of qualitative theory and bifurcation theory, Gorky, 1989, 151–159 [English translation in Selecta Math. Soviet., 11 (1992), 375–382].
[136] Russ. Math. Survey 1980 164 165
, ,[137] IHES Publ. Math. 1985 67 127
[138] Nonlinearity 1989 149 174
[139] Mem. AMS 1990 1 82
, ,[140] Mem. AMS 1990 83 175
, ,[141] Phys. Lett. A 1983 1 5
, ,[142] Physica D 1983 285 304
[143] Structure of the quasihyperbolic stochasticity in an inertial self-excited oscillator Radiophysics and Quantum Electronics 1983 619 628
, , ,[144] V.S. Anishenko. Complex oscillations in simple systems. Nauka, Moscow, 1990.
[145] K. Kaneko. Collapse of Tori and Genesis of Chaos in Dissipative Systems. World Scientific, Singapore, 1986.
[146] C. Bonatti, Y. Shi, Robustly transitive attractor derived from Lorenz, in preparation.
Cité par Sources :