Development and Evaluation of Plant Growth Models: Methodology and Implementation in the PYGMALION platform
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 4, pp. 112-130.

Voir la notice de l'article provenant de la source EDP Sciences

Mathematical models of plant growth are generally characterized by a large number of interacting processes, a large number of model parameters and costly experimental data acquisition. Such complexities make model parameterization a difficult process. Moreover, there is a large variety of models that coexist in the literature with generally an absence of benchmarking between the different approaches and insufficient model evaluation. In this context, this paper aims at enhancing good modelling practices in the plant growth modelling community and at increasing model design efficiency. It gives an overview of the different steps in modelling and specify them in the case of plant growth models specifically regarding their above mentioned characteristics. Different methods allowing to perform these steps are implemented in a dedicated platform PYGMALION (Plant Growth Model Analysis, Identification and Optimization). Some of these methods are original. The C++ platform proposes a framework in which stochastic or deterministic discrete dynamic models can be implemented, and several efficient methods for sensitivity analysis, uncertainty analysis, parameter estimation, model selection or data assimilation can be used for model design, evaluation or application. Finally, a new model, the LNAS model for sugar beet growth, is presented and serves to illustrate how the different methods in PYGMALION can be used for its parameterization, its evaluation and its application to yield prediction. The model is evaluated from real data and is shown to have interesting predictive capacities when coupled with data assimilation techniques.
DOI : 10.1051/mmnp/20138407

P.-H. Cournède 1 ; Y. Chen 1 ; Q. Wu 1 ; C. Baey 1 ; B. Bayol 1

1 Ecole Centrale Paris, Laboratoire MAS, Digiplante - 92290 Châtenay Malabry, France
@article{MMNP_2013_8_4_a6,
     author = {P.-H. Courn\`ede and Y. Chen and Q. Wu and C. Baey and B. Bayol},
     title = {Development and {Evaluation} of {Plant} {Growth} {Models:} {Methodology} and {Implementation} in the {PYGMALION} platform},
     journal = {Mathematical modelling of natural phenomena},
     pages = {112--130},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2013},
     doi = {10.1051/mmnp/20138407},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138407/}
}
TY  - JOUR
AU  - P.-H. Cournède
AU  - Y. Chen
AU  - Q. Wu
AU  - C. Baey
AU  - B. Bayol
TI  - Development and Evaluation of Plant Growth Models: Methodology and Implementation in the PYGMALION platform
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 112
EP  - 130
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138407/
DO  - 10.1051/mmnp/20138407
LA  - en
ID  - MMNP_2013_8_4_a6
ER  - 
%0 Journal Article
%A P.-H. Cournède
%A Y. Chen
%A Q. Wu
%A C. Baey
%A B. Bayol
%T Development and Evaluation of Plant Growth Models: Methodology and Implementation in the PYGMALION platform
%J Mathematical modelling of natural phenomena
%D 2013
%P 112-130
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138407/
%R 10.1051/mmnp/20138407
%G en
%F MMNP_2013_8_4_a6
P.-H. Cournède; Y. Chen; Q. Wu; C. Baey; B. Bayol. Development and Evaluation of Plant Growth Models: Methodology and Implementation in the PYGMALION platform. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 4, pp. 112-130. doi : 10.1051/mmnp/20138407. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138407/

[1] D.R. Anderson. Model based inference in the life sciences. Springer, 2008.

[2] C. Baey, A. Didier, S. Li, S. Lemaire, F. Maupas, P.-H. Cournède. Evaluation of the predictive capacity of five plant growth models for sugar beet. 4th international symposium on Plant Growth and Applications (PMA12), Shanghai, China, IEEE, 2012.

[3] C. Baey, A. Didier, S. Lemaire, F. Maupas, P.-H. Cournède Ecological Modelling 2013 56 63

[4] J. Bertheloot, P.-H. Cournède, B. Andrieu Annals of Botany 2011 1085 1096

[5] B.M. Bolker. Ecological models and data in R. Princeton University Press, 2008.

[6] N. Brisson, C. Gary, E. Justes, R. Roche, B. Mary, D. Ripoche, D. Zimmer, J. Sierra, P. Bertuzzi, P. Burger, F. Bussière, Y.M. Cabidoche, P. Cellier, P. Debaeke, J.P. Gaudillère, C. Hénault, F. Maraux, B. Seguin, H. Sinoquet European Journal of Agronomy 2003 309 332

[7] V. Brukkin, N. Morozova Mathematical Modelling of Natural Phenomena 2011 1 53

[8] K.P. Burnham, D.R. Anderson. Model selection and multimodel inference: a practical information-theoretic approach. 2nd edition, Springer Verlag, 2002.

[9] K. Campbell, M.D. Mckay, B.J. Williams Reliability Engineering and System Safety 2006 1468 1472

[10] F. Campillo, V. Rossi IEEE Transactions on Aerospace and Electronic Systems 2009 1063 1072

[11] F. Campolongo, J. Cariboni, A. Saltelli Environmental Modelling and Software 2007 1509 518

[12] O. Cappé, E. Moulines, T. Rydén. Inference in hidden Markov models, Springer, New York, 2005.

[13] J. Cariboni, D. Gatelli, R. Liska, A. Saltelli Ecological Modelling 2007 167 182

[14] E.R. Carson, C. Cobelli. Modelling methodology for physiology and medicine. Academic Press, San Diego (US), 2001.

[15] Y. Chen, B. Bayol, C. Loi, S. Trevezas, P.-H. Cournède. Filtrage par noyaux de convolution itératif. Actes des 44èmes Journées de Statistique, JDS2012, Bruxelles 21-25 Mai 2012.

[16] P.-H. Cournède. Dynamic system of plant growth. HDR Thesis, University of Montpellier II, 2009.

[17] P.-H. Cournède, M.Z. Kang, A. Mathieu, J.-F. Barczi, H.P. Yan, B.G. Hu, P. De Reffye Simulation 2006 427 438

[18] P.-H. Cournède, V. Letort, A. Mathieu, M.Z. Kang, S. Lemaire, S. Trevezas, F. Houllier, P. De Reffye Math. Model. Natural Phenom. 2011 133 159

[19] D.C. Cox, P. Baybutt Risk Analysis 1981 251 258

[20] L. Dente, G. Satalino, F. Mattia, M. Rinaldi Remote Sensing of Environment 2008 1395 1407

[21] P. de Reffye, E. Heuvelink, D. Barthélémy, P.-H. Cournède. Plant growth models. Ecological Models, Vol. 4 of Encyclopedia of Ecology (5 volumes) (S.E. Jorgensen and B. Fath, eds.), Elsevier, Oxford, 2008, pp. 2824–2837.

[22] B. Efron, R.J. Tibshirani. An introduction to the bootstrap. Chapman Hall / CRC Monographs on Statistics and Applied Probability, 1994.

[23] G. Evensen. Data assimilation: The ensemble Kalman filter. Springer, 2009.

[24] G.C. Goodwin, R.L. Payne. Dynamic system identification: Experiment design and data analysis. Academic Press, New York, 1977.

[25] M. Guérif, C. Duke European Journal of Agronomy 1998 127 136

[26] M. Guérif, C. Duke Agriculture, Ecosystems and Environment 2000 57 69

[27] J.C. Helton, J.D. Johnson, C.J. Salaberry, C.B. Storlie Reliability Engineering and System Safety 2006 1175 1209

[28] Y. Guo, Y.T. Ma, Z.G. Zhan, B.G. Li, M. Dingkuhn, D. Luquet, P. De Reffye Annals of Botany 2006 217 230

[29] Y. Guo, T. Fourcaud, M. Jaeger, X.P. Zhang, B.G. Li Annals of Botany 2011 723 727

[30] R. Hemmerling, O. Kniemeyer, D. Lanwert, G. Buck-Sorlin, W. Kurth Functional Plant Biology 2008 739 750

[31] T. Homma, A. Saltelli Reliability Engineering and System Safety 1996 1 17

[32] C.A. Jones, J.R. Kiniry. Ceres-Maize: A simulation model of Maize growth and development. Texas A University Press, 1986.

[33] S. Julier, J. Uhlmann, H.F. Durrant-Whyte IEEE Transactions on Automatic Control 2000 477 482

[34] B.A. Keating, P.S. Carberry, G.L. Hammer, M.E. Probert, M.J. Robertson, D. Holzworth, N.I. Huth, J.N.G. Hargreaves, H. Meinke, Z. Hochman, G. Mclean, K. Verburg, V. Snow, J.P. Dimes, M. Silburn, E. Wang, S. Brown, K.L. Bristow, S. Asseng, S. Chapman, R.L. Mccown, D.M. Freebairn, C.J. Smith European Journal of Agronomy 2003 267 288

[35] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi Science 1983 671 680

[36] G. Kitagawa Journal of Computational and Graphical Statistics 1996 1 25

[37] E. Kuhn, M. Lavielle Computational Statistics and Data Analysis 2005 1020 1038

[38] M. Lamboni, H. Monod, D. Makowski Field Crops Research 2009 312 320

[39] M. Launay, M. Guérif Agriculture, ecosystems and environment 2005 321 339

[40] J. Lecoeur, R. Poiré-Lassus, A. Christophe, B. Pallas, P. Casadebaig, P. Debaeke, F. Vear, L. Guilioni Functional Plant Biology 2011 246 259

[41] F. Legland, C. Musso, N. Oudjane. An analysis of regularized interacting particle methods for nonlinear filtering. 3rd IEEE Workshop on Computer-Intensive Methods in Control and Data Processing, Prague, 1998.

[42] S. Lemaire, F. Maupas, P.-H. Cournède, P. de Reffye. A morphogenetic crop model for sugar-beet (Beta Vulgaris l.). Crop Modeling and Decision Support, (W. Cao, J. White, E. Wang, eds.), Springer, 2009, pp 116–129.

[43] S. Lemaire, F. Maupas, P.-H. Cournède, J.-M. Allirand, P. de Reffye, B. Ney. Analysis of the density effects on the source-sink dynamics in sugar-beet growth. 3rd international symposium on Plant Growth and Applications(PMA09), Beijing, China (B.-G. Li, M. Jaeger, Y. Guo, eds.), IEEE Computer Society (Los Alamitos, California), Novem. 9-12 2009.

[44] C. Loi, P.-H. Cournède. Generating functions of stochastic L-systems and application to models of plant development. Discrete Mathematics and Theoretical Computer Science Proceedings, AI (2008), 325–338.

[45] Y. Ma, M.P. Wen, Y. Guo, B.G. Li, P.-H. Cournède, P. De Reffye Annals of Bot. 2008 1185 1194

[46] A. Mathieu, P.-H. Cournède, V. Letort, D. Barthélémy, P. De Reffye Annals of Botany 2009 1173 1186

[47] H. Monod, C. Naud, D. Makowski. Uncertainty and sensitivity analysis for crop models. Working with Dynamic Crop Models (D. Wallach, D. Makowski, J.W. Jones, eds.), Elsevier, 2006, pp. 55–100.

[48] M.G. Morgan, M. Henrion, M. Small. Uncertainty. Cambridge University Press, 1990.

[49] M.D. Morris Technometrics 1991 161 174

[50] T. Nilson Agricult. and Forest Meteorol. 1971 25 38

[51] A. O’Hagan, J.J. Forster. Kendall’s advanced theory of statistics: Bayesian inference. Arnold, London, 2nd edit., 2004,

[52] J. Perttunen, R. Sievänen, E. Nikinmaa, H. Salminen, H. Saarenmaa, J. Vakeva Ecological Modelling 2005 479 491

[53] C. Pradal, S. Dufour-Kowalski, F. Boudon, C. Fournier, C. Godin Functional Plant Biology 2008 751 760

[54] V. Rossi, J.-P. Vila Annales de l’Institut de Statistique de l’Université de Paris 2006 71 102

[55] F. Ruget, N. Brisson, R. Delécolle, R. Faivre Agronomie 2002 133 158

[56] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, S. Tarantola. Global sensitivity analysis. The primer ed., John Wiley, 2008.

[57] Y.H. Shi, R. Eberhart. A modified particle swarm optimizer. Evolutionary Computation Proceedings (IEEE World Congress on Computational Intelligence) (K.R. Belew, L.B. Booker, eds.), Morgan Kaufmann, 1998, pp. 69–73.

[58] I. Sobol Math. Model. Comput. Experim. 1993 407 414

[59] S. Trevezas, P.-H. Cournède Journal of Agricultural 2013 250 270

[60] W. Taylor Econometrica 1977 497 508

[61] R.H. Van Waveren, S. Groot, H. Scholten, F. Van Geer, H. Wosten, R. Koeze, J. Noort. Good modelling practice handbook. Tech. Report 99-05, STOWA, Utrecht, RWS-RIZA, Lelystad, The Netherlands, 1999.

[62] H. Varella, S. Buis, M. Launay, M. Guérif Agricultural Sciences 2012 949 961

[63] J. Vos, J.B. Evers, G.H. Buck-Sorlin, B. Andrieu, M. Chelle, P.H.B. De Visser Journal of Experimental Botany 2010 2101 2115

[64] D. Wallach, B. Goffinet Biometrics 1987 561 573

[65] D. Wallach, B. Goffinet, J.-E. Bergez, P. Debaeke, D. Leenhardt, J.-N. Aubertot Agronomie 2002 159 170

[66] D. Wallach, S. Buis, P. Lecharpentier, J. Bourges, P. Clastre, M. Launay, J.-E. Bergez, M. Guérif, J. Soudais, E. Justes Environmental Modelling and Software 2011 386 394

[67] E. Walter, L. Pronzato. Identification de modèles paramétriques. Masson, Paris, 2006.

[68] Q. Wu, P.-H. Cournède. Sensitivity analysis of Greenlab model for Maize. 3rd international symposium on Plant Growth and Applications(PMA09), Beijing, China (B.G. Li, M. Jaeger, Y. Guo, eds.), IEEE, November 9-12 2009.

[69] Q. Wu, P.-H. Cournède, A. Mathieu Reliability Engineering and System Safety 2012 35 43

[70] Q. Wu, P.-H. Cournède. A comprehensive methodology of global sensitivity analysis for complex mechanistic models: An application to plant growth. Submitted, (2013).

[71] H.P. Yan, M.Z. Kang, P. De Reffye, M. Dingkuhn Annals of Botany 2004 591 602

Cité par Sources :