Mathematical Models for Expansive Growth of Cells with Walls
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 4, pp. 35-61.

Voir la notice de l'article provenant de la source EDP Sciences

Plants, algae, and fungi are essential for nearly all life on earth. Through photosynthesis, plants and algae convert solar energy to chemical energy in the form of organic compounds that sustains essentially all life on earth. In addition, plants and algae convert the carbon dioxide produced by respiring organisms to oxygen that is needed for respiration. Fungi decompose complex organic compounds produced by respiring organisms so that molecules can be recycled in photosynthesis and respiration. Plants, algae, and fungi have one important feature in common, their cells have walls. Expansive growth and its regulation are central to the life and development of plant, algal, and fungal cells, i.e. cells with walls. In recent decades there has been an explosion of information relevant to expansive growth of cells with walls. Mathematical models have been constructed in an attempt to organize and evaluate this information, to gain insight, to evaluate hypotheses, and to assist in the selection and development of new experimental studies. In this article some of the mathematical models constructed to study expansive growth of cells with walls are reviewed. It is nearly impossible to review all relevant research conducted in this area. Instead, the review focuses on the development of mathematical equations that have been used to model expansive growth, morphogenesis, and growth rate regulation of cells with walls. Also, relevant experimental findings are reviewed, conceptual models are presented, and suggestions for future research are proposed. The authors have attempted to provide an overview that is accessible to researchers that are not working in this field.
DOI : 10.1051/mmnp/20138404

J.K.E. Ortega 1 ; S.W.J. Welch 1

1 Bioengineering Laboratory, Department of Mechanical Engineering, University of Colorado Denver, Colorado 80217-3364 USA
@article{MMNP_2013_8_4_a3,
     author = {J.K.E. Ortega and S.W.J. Welch},
     title = {Mathematical {Models} for {Expansive} {Growth} of {Cells} with {Walls}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {35--61},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2013},
     doi = {10.1051/mmnp/20138404},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138404/}
}
TY  - JOUR
AU  - J.K.E. Ortega
AU  - S.W.J. Welch
TI  - Mathematical Models for Expansive Growth of Cells with Walls
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 35
EP  - 61
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138404/
DO  - 10.1051/mmnp/20138404
LA  - en
ID  - MMNP_2013_8_4_a3
ER  - 
%0 Journal Article
%A J.K.E. Ortega
%A S.W.J. Welch
%T Mathematical Models for Expansive Growth of Cells with Walls
%J Mathematical modelling of natural phenomena
%D 2013
%P 35-61
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138404/
%R 10.1051/mmnp/20138404
%G en
%F MMNP_2013_8_4_a3
J.K.E. Ortega; S.W.J. Welch. Mathematical Models for Expansive Growth of Cells with Walls. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 4, pp. 35-61. doi : 10.1051/mmnp/20138404. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138404/

[1] C.N. Ahlquist, R.I. Gamow Plant Physiol. 1973 586 587

[2] D. Ambrosi, G.A. Ateshian, E.M. Arruda, S.C. Cowin, J. Dumais, A. Goriely, G.A. Holzapfel, J.D. Humphrey, R. Kemkemer, E. Kuhl, J.E. Olberding, L.A. Taber, K. Garikipati J Mech. Phys. Solids 2011 863 883

[3] S. Bartnicki-Garcia, C.E. Bracker, G. Glerz, R. Lopez-Franco, H. Lu Biophys J. 2000 2382 2390

[4] T.I. Baskin Anisotropic expansion of the plant cell wall Annu Rev Cell Dev Biol 2005 203 222

[5] E.C. Bingham. Fluidity and Plasticity. McGraw-Hill, New York, 1922.

[6] J. Bove, B. Vaillancourt, J. Kroeger, P.K. Hepler, P.W. Wiseman, A. Geitmann Plant Physiol. 2008 1646 1658

[7] J.S. Boyer Funct. Plant Biol. 2009 383 394

[8] O. Campas, L. Mahadevan Current Biol. 2009 2102 2107

[9] N.C. Carpita, D.M. Gibeaut Plant J. 1993 1 30

[10] E.S. Castle Am J Botany 1942 664 672

[11] M.A.J. Chaplain J Theor. Biol. 1993 77 97

[12] Y. Chebli, A. Geitmann Funct. Plant Sci Biotech. 2007 232 245

[13] E. Cerda-Olmedo, E.D. Lipson. Phycomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1987.

[14] D.J. Cosgrove Plant Physiol. 1985 347 356

[15] D.J. Cosgrove Planta 1987 266 278

[16] D.J. Cosgrove Annu. Rev. Cell Dev. Biol. 1997 171 201

[17] D.J. Cosgrove Nature 2000 321 326

[18] D.J. Cosgrove Nat. Rev. Mol. Cell Biol. 2005 850 861

[19] J. Dumais, S.L. Shaw, C.R. Steele, S.R. Long, P.M. Ray Int. J Dev. Biol. 2006 209 222

[20] R.J. Dyson, O.E. Jensen J Fluid Mech. 2010 472 503

[21] R.J. Dyson, L.R. Band, O.E. Jensen J Theor Biol. 2012 125 136

[22] T.C. Gasser, R.W. Ogden, G.A. Holzapfel J Roy Soc. Interface 2006 15 35

[23] A. Geitmann, Y.Q. Li, M. Cresti Bot. Acta 1996 102 109

[24] A. Geitmann, J.K.E. Ortega Trends Plant Sci. 2009 467 478

[25] G. Gierz, S. Bartnicki-Garcia J Theor. Biol. 2001 151 164

[26] J.E.F. Green, A. Friedman Europ. J Appl. Math. 2008 225 257

[27] P.B. Green Plant Physiol. 1968 1169 1184

[28] P.B. Green Ann. Rev. Plant Physiol. 1969 365 394

[29] P.B. Green, R.O. Erickson, J. Buggy Plant Physiol. 1971 423 430

[30] I.B. Heath. Tip growth in plant and fungal cells. Academic Press, Inc., San Diego, CA , 1990.

[31] T. Holdaway-Clarke, P. Hepler New Phytol. 2003 539 563

[32] R. Huang, A.A. Becker, I.A. Jones J Mech. Phys. Solids 2012 750 783

[33] J.H. Kroeger, A. Geitmann, M. Grant J Theor. Biol. 2008 363 374

[34] J.H. Kroeger, R. Zerzour, A. Geitmann PLoS One 2011 e18549

[35] J.H. Kroeger, A. Geitmann Mech. Res. Comm. 2012 32 39

[36] S. Lewicka Plant Physiol. 2006 1493 1510

[37] J. Liu, B.M.A.G. Piette, M.J. Deeks, V.E. Franklin-Tong, P.J. Hussey Plos One 2010 e13157

[38] J.A. Lockhart J Theor. Biol. 1965 264 275

[39] F. Marga, M. Grandbois, D.J. Cosgrove, T.I. Baskin Plant J. 2005 181 190

[40] M.A. Messerli, R. Greton, L.F. Jaffe, K.R. Robinson Dev. Biol. 2000 84 98

[41] F.J. Molz, J.S. Boyer Plant Physiol. 1978 423 429

[42] R. Murphy, J.K.E. Ortega Plant Physiol. 1995 995 1005

[43] R. Murphy, J.K.E. Ortega Plant Physiol. 1996 1309 1316

[44] H. Nonami, J.S. Boyer Plant Physiol. 1993 13 19

[45] J.K.E. Ortega Plant Physiol. 1985 318 320

[46] J.K.E. Ortega Physiol. Plant 1990 116 121

[47] J.K.E. Ortega Ed. SG Pandalai, Rec. Res. Dev. Biophys, Transworld Research Network, Kerala, India. 2004 297 324

[48] J.K.E. Ortega Plant Physiol. 2010 1244 1253

[49] J.K.E. Ortega Rec. Res. Dev. Plant Physiol. 2012 1 19

[50] J.K.E. Ortega, R.I. Gamow J Theor. Biol. 1974 317 332

[51] J.K.E. Ortega, R.G. Keanini, K.J. Manica Plant Physiol. 1988 11 14

[52] J.K.E. Ortega, K.J. Manica, R.G. Keanini Photochem. Photobiol. 1988 697 703

[53] J.K.E. Ortega, E.G. Zehr, R.G. Keanini Biophys. J. 1989 465 475

[54] J.K.E. Ortega, G.E. Lesh-Laurie, M.A. Espinosa, E.L. Ortega, S.M. Manos, M.D. Cunning, J.E.C. Olson Planta 2003 716 722

[55] J.K.E. Ortega, C.M. Munoz, S.E. Blakley, J.T. Truong, E.L. Ortega Frontiers in Plant Science 2012 1 12

[56] J.K.E. Ortega, M.E. Smith, A.J. Erazo, M.A. Espinosa, S.A. Bell, E.G. Zehr Planta 1991 613 619

[57] E. Parre, A. Geitmann Planta 2005 582 592

[58] R. Parton, S. Fischer-Parton, M. Watahiki, A. Trewavas J Cell Sci. 2001 2685 2695

[59] J.B. Passioura, S.C. Fry Austral. J Plant Physiol. 1992 565 576

[60] M. Pietruszka J Royal Soc. Int. 2011 975 987

[61] M. Pietruszka J Plant Growth Regul. 2013 102 107

[62] T.E. Proseus, J.S. Boyer J Exp. Bot. 2012 3953 3958

[63] T.E. Proseus, J.K.E. Ortega, J.S. Boyer Plant Physiol. 1999 775 784

[64] T.E. Proseus, G.L. Zhu, J.S. Boyer J. Exp. Bot. 2000 1481 1494

[65] P.A. Richmond, J.-P. Métraux, L. Taiz Plant Physiol. 1980 211 217

[66] E.K. Rodriguez, A. Hoger, A. Mcculloch J. Biomechanics 1994 455 467

[67] P.A. Roelofsen Record of Travaux Botaniques Neerlandais 1950 72 110

[68] P. Roelofsen Biochemica et Biophysica Acta 1951 357 373

[69] E.R. Rojas, S. Hotton, J. Dumais Biophys. J. 2011 1844 1853

[70] J. Ruiz-Herrera. Fungal cell wall: Structure, synthesis, and assembly. CRC Press, New York, 2012.

[71] J.C. Simo, T.J.R. Hughes. Computational Inelasticity. Springer, New York, 1998.

[72] A.J.M. Spencer J Mech. Phys. Solids 2001 2667 2687

[73] L. Taiz Ann. Rev. Plant Physiol. 1984 585 657

[74] A.-C. Tang, J.S. Boyer J Exp. Bot. 2008 753 764

[75] R. Vandiver, A. Goriely Europhys. Letter 2008 58004

[76] B. Veytsmann, D.J. Cosgrove Biophys. J. 1998 2240 2250

[77] J.G.H. Wessel. Tip growth in plant and fungal cells. IB Heath (Ed.), Academic Press, Inc., San Diego, CA (1990), 1–29.

[78] A. Yan, G. Xu, Z.-B. Yang PNAS 2009 22002 22007

Cité par Sources :