Pollen Tubes With More Viscous Cell Walls Oscillate at Lower Frequencies
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 4, pp. 25-34.

Voir la notice de l'article provenant de la source EDP Sciences

Pollen tubes are tip growing plant cells that display oscillatory growth behavior. It has been demonstrated experimentally that the reduction of the average pollen tube growth rate through elevated extracellular calcium or borate concentrations coincides with a greater amplitude of the growth rate oscillation and a lower oscillation frequency. We present a simple numerical model of pollen tube growth that reproduces these results, as well as analytical calculations that suggest an underlying mechanism. These data show that the pollen tube oscillator is non-isochronous, and is different from harmonic oscillation.
DOI : 10.1051/mmnp/20138403

J. H. Kroeger 1 ; A. Geitmann 2

1 Raymor Nanotech, Boisbriand, Québec, Canada
2 Département de sciences biologiques, Institut de recherche en biologie végétale, Université de Montréal, Montréal, Québec, Canada
@article{MMNP_2013_8_4_a2,
     author = {J. H. Kroeger and A. Geitmann},
     title = {Pollen {Tubes} {With} {More} {Viscous} {Cell} {Walls} {Oscillate} at {Lower} {Frequencies}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {25--34},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2013},
     doi = {10.1051/mmnp/20138403},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138403/}
}
TY  - JOUR
AU  - J. H. Kroeger
AU  - A. Geitmann
TI  - Pollen Tubes With More Viscous Cell Walls Oscillate at Lower Frequencies
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 25
EP  - 34
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138403/
DO  - 10.1051/mmnp/20138403
LA  - en
ID  - MMNP_2013_8_4_a2
ER  - 
%0 Journal Article
%A J. H. Kroeger
%A A. Geitmann
%T Pollen Tubes With More Viscous Cell Walls Oscillate at Lower Frequencies
%J Mathematical modelling of natural phenomena
%D 2013
%P 25-34
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138403/
%R 10.1051/mmnp/20138403
%G en
%F MMNP_2013_8_4_a2
J. H. Kroeger; A. Geitmann. Pollen Tubes With More Viscous Cell Walls Oscillate at Lower Frequencies. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 4, pp. 25-34. doi : 10.1051/mmnp/20138403. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138403/

[1] F. Bou Daher, A. Geitmann Traffic 2011 1537 1551

[2] A. Chavarría-Krauser, D. Yejie J. of Theor. Biol. 2011 10 24

[3] Y. Chebli, A. Geitmann Functional Plant Science and Biotechnology 2007 232 245

[4] J. Dumais, S.R. Long, S.L. Shaw Plant Physiology 2004 3266 3275

[5] J. Dumais, S.L. Shaw, C.R. Steele, S.R. Long, P.M. Ray International Journal of Developmental Biology 2006 209 222

[6] R. Dutta, K.R. Robinson Plant Physiol. 2004 1398 1406

[7] E. Eggen, M.N. De Keijser, B.M. Mulder Journal of Theoretical Biology 2011 113 121

[8] P. Fayant, O. Girlanda, Y. Chebli, C.E. Aubin, I. Villemure, A. Geitmann Plant Cell 2010 2579 2593

[9] A. Fleischer, C. Titel, R. Ehwald Plant Physiology 1998 1401 1410

[10] A. Fleischer, M.A. O’Neill, R. Ehwald Plant Physiology 1999 829 838

[11] A. Geitmann, M.W. Steer. The architecture and properties of the pollen tube cell wall. In: R. Malhó (Ed) The Pollen Tube: A Cellular and Molecular. Perspective, Plant Cell Monographs, Springer Verlag, Berlin, 2006.

[12] A.E. Hill, B. Shachar-Hill, J.N. Skepper, J. Powell, Y. Shachar-Hill PLoS One 2012 e36585

[13] T. L. Holdaway-Clarke, N. M. Weddle, S. Kim, A. Robi, C. Parris, J. G. Kunkel, P. K. Hepler Journal of Experimental Botany 2003 65 72

[14] T. L. Holdaway-Clarke, P.K. Hepler New Phytologist 2003 539 563

[15] T. Ishii, T. Matsunaga, N. Hayashi Plant Physiology 2001 1698 1705

[16] H. Li, Y. Lin, R.M. Heath, M.X. Zhu, Z. Yang Plant Cell 1999 1731 1742

[17] J.A. Lockhart Journal of Theoretical Biology 1965 264 275

[18] J. H. Kroeger, R. Zerzour, A. Geitmann PLoS One 2011 e18549

[19] J. H. Kroeger, F. Bou Daher, M. Grant, A. Geitmann Biophysical Journal 2009 1822 1831

[20] J.H. Kroeger, A. Geitmann, M. Grant Journal of Theoretical Biology 2008 363 374

[21] J.H. Kroeger, A. Geitmann Pollen tube growth: Getting a grip on cell biology through modeling Mechanical Research Communications 2012 32 39

[22] M. Leoni, T. B. Liverpool Phys. Rev. E 2012 040901

[23] J. Liu, B.M.A.G. Piette, M.J. Deeks, V. E. Franklin-Tong, P.J. Hussey PLoS One 2010 e13157

[24] T. Matoh, M. Kobayashi Journal of Plant Research 1998 179 190

[25] S.T. Mckenna, J.G. Kunkel, C.M. Rounds, L. Vidali, L.J. Winship, P.K. Hepler Plant Cell 2009 3026 3040

[26] J.K.E. Ortega Physiologia Plantarum 1990 116 121

[27] B.L. Ridley, M.A. O’Neill, D.A. Mohnen Phytochemistry 2001 929 967

[28] J. Rinzel. Bursting oscillations in an excitable membrane model, in ordinary and partial differential equations. In: Sleeman BD, Jarvis RJ, editors. Lecture Notes in Mathematics. (1985) New York: Springer. pp. 304–316.

[29] E. Rojas, S. Hotton, J. Dumais Biophysical Journal 2011 1844 1853

[30] S.J. Roy, T.L. Holdaway-Clarke, G.R. Hackett, J.G. Kunkel, E.M. Lord, P.K. Helpler The Plant Journal 1999 379 386

[31] G. Ullah, P. Jung, A. Cornell-Bell Cell Calcium 2006 197208

[32] L.J. Winship, G. Obermeyer, A. Geitmann, Pk. Hepler 2010 Under pressure, cell walls set the pace Trends in Plant Science 363 369

[33] A. Yan, G. Xu, Z.-B. Yang P.N.A.S. 2009 22002 22007

[34] R. Zerzour, J.H. Kroeger, A. Geitmann Dev. Biol. 2009 437 446

[35] L. Zonia, T. Munnik Trends Plant Sci. 2009 318 327

[36] L. Zonia, T. Munnik Journal of Experimental Botany 2008 861 873

Cité par Sources :