Calcium Waves in Thin Visco-Elastic Cells
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 206-226.

Voir la notice de l'article provenant de la source EDP Sciences

The model we consider treats the cell as a viscoelastic medium filling one of two kinds of thin domains (“shapes” of cells): the thin slab being a caricature of a tissue and the thin circular cylinder mimicking a long cell. This enables us to simplify the system of mechano-chemical equations. We construct abundant classes of explicit, but approximate, formulae for heteroclinic solutions to these equations.
DOI : 10.1051/mmnp/20138313

K. Piechór 1

1 Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B 02-106 Warszawa, Poland
@article{MMNP_2013_8_3_a12,
     author = {K. Piech\'or},
     title = {Calcium {Waves} in {Thin} {Visco-Elastic} {Cells}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {206--226},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2013},
     doi = {10.1051/mmnp/20138313},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138313/}
}
TY  - JOUR
AU  - K. Piechór
TI  - Calcium Waves in Thin Visco-Elastic Cells
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 206
EP  - 226
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138313/
DO  - 10.1051/mmnp/20138313
LA  - en
ID  - MMNP_2013_8_3_a12
ER  - 
%0 Journal Article
%A K. Piechór
%T Calcium Waves in Thin Visco-Elastic Cells
%J Mathematical modelling of natural phenomena
%D 2013
%P 206-226
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138313/
%R 10.1051/mmnp/20138313
%G en
%F MMNP_2013_8_3_a12
K. Piechór. Calcium Waves in Thin Visco-Elastic Cells. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 206-226. doi : 10.1051/mmnp/20138313. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138313/

[1] J. D. Murray, G. F. Oster IMA Journal of Mathematics Applied in Medicine and Biology 1984 51 75

[2] C. Lane, J. D. Murray, V. S. Manoranjan IMA Journal of Mathematics Applied in Medicine and Biology 1987 309 331

[3] C. Brière, B.C. Goodwin Journal of Mathematical Biology 585 593 1990

[4] B. Kaźmierczak, M. Dyzma Archives of Mechanics 2010 121 133

[5] B. Kaźmierczak, Z. Peradzyński Journal of Mathematical Biology 2011 1 38

[6] G. Flores, A. Minzoni, K. Mischaikov, V. Moll 1999 45 62

[7] J. D. Murray. Mathematical Biology. 2nd ed. Springer, Berlin, 1993.

[8] J. Keener, J. Sneyd. Mathematical Physiology. Springer, New York, 1998

[9] P. Fife. Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomathematics, Vo. 28, Springer, New York, 1979.

[10] B. Kaźmierczak, V. Volpert Nonlinear Analysis 2003 467 491

[11] B. Kaźmierczak, V. Volpert Math. Mod. Meth. Appl. Sci. 2008 883 912

[12] B. Kaźmierczak, V. Volpert Nonlinearity 2008 71 96

[13] F. J. Richards Journal of Experimental Botany 1959 290 300

[14] Z. Peradzyński Archives of Mechanics 2010 423 440

[15] K. Piechór Archives of Mechanics 2012 477 509

Cité par Sources :