Asymptotic Behavior of Solutions to Diffusion Problems with Robin and Free Boundary Conditions
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 18-32.

Voir la notice de l'article provenant de la source EDP Sciences

We study a nonlinear diffusion equation ut = uxx + f(u) with Robin boundary condition at x = 0 and with a free boundary condition at x = h(t), where h(t) > 0 is a moving boundary representing the expanding front in ecology models. For any f ∈ C1 with f(0) = 0, we prove that every bounded positive solution of this problem converges to a stationary one. As applications, we use this convergence result to study diffusion equations with monostable and combustion types of nonlinearities. We obtain dichotomy results and sharp thresholds for the asymptotic behavior of the solutions.
DOI : 10.1051/mmnp/20138303

X. Liu 1 ; B. Lou 1

1 Department of Mathematics, Tongji University, Shanghai 200092, China
@article{MMNP_2013_8_3_a2,
     author = {X. Liu and B. Lou},
     title = {Asymptotic {Behavior} of {Solutions} to {Diffusion} {Problems} with {Robin} and {Free} {Boundary} {Conditions}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {18--32},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2013},
     doi = {10.1051/mmnp/20138303},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138303/}
}
TY  - JOUR
AU  - X. Liu
AU  - B. Lou
TI  - Asymptotic Behavior of Solutions to Diffusion Problems with Robin and Free Boundary Conditions
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 18
EP  - 32
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138303/
DO  - 10.1051/mmnp/20138303
LA  - en
ID  - MMNP_2013_8_3_a2
ER  - 
%0 Journal Article
%A X. Liu
%A B. Lou
%T Asymptotic Behavior of Solutions to Diffusion Problems with Robin and Free Boundary Conditions
%J Mathematical modelling of natural phenomena
%D 2013
%P 18-32
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138303/
%R 10.1051/mmnp/20138303
%G en
%F MMNP_2013_8_3_a2
X. Liu; B. Lou. Asymptotic Behavior of Solutions to Diffusion Problems with Robin and Free Boundary Conditions. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 18-32. doi : 10.1051/mmnp/20138303. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138303/

[1] S. B. Angenent J. Reine Angew. Math. 1988 79 96

[2] D. G. Aronson, H. F. Weinberger Adv. in Math. 1978 33 76

[3] G. Bunting, Y. Du, K. Krakowski. Spreading speed revisited: Analysis of a free boundary model. Netw. Heterog. Media., (to appear).

[4] Y. Du, Z. G. Lin SIAM J. Math. Anal. 2010 377 405

[5] Y. Du, B. D. Lou. Spreading and vanishing in nonlinear diffusion problems with free boundaries. Preprint.

[6] Y. Du, H. Matano J. Eur. Math. Soc. 2010 279 312

[7] Y. Kaneko, Y. Yamada Adv. Math. Sci. Appl. 2011 467 492

[8] Z. G. Lin Nonlinearity 2007 1883 1892

Cité par Sources :