Asymptotic Behavior of Solutions to Diffusion Problems with Robin and Free Boundary Conditions
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 18-32
Cet article a éte moissonné depuis la source EDP Sciences
We study a nonlinear diffusion equation ut = uxx + f(u) with Robin boundary condition at x = 0 and with a free boundary condition at x = h(t), where h(t) > 0 is a moving boundary representing the expanding front in ecology models. For any f ∈ C1 with f(0) = 0, we prove that every bounded positive solution of this problem converges to a stationary one. As applications, we use this convergence result to study diffusion equations with monostable and combustion types of nonlinearities. We obtain dichotomy results and sharp thresholds for the asymptotic behavior of the solutions.
@article{10_1051_mmnp_20138303,
author = {X. Liu and B. Lou},
title = {Asymptotic {Behavior} of {Solutions} to {Diffusion} {Problems} with {Robin} and {Free} {Boundary} {Conditions}},
journal = {Mathematical modelling of natural phenomena},
pages = {18--32},
year = {2013},
volume = {8},
number = {3},
doi = {10.1051/mmnp/20138303},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138303/}
}
TY - JOUR AU - X. Liu AU - B. Lou TI - Asymptotic Behavior of Solutions to Diffusion Problems with Robin and Free Boundary Conditions JO - Mathematical modelling of natural phenomena PY - 2013 SP - 18 EP - 32 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138303/ DO - 10.1051/mmnp/20138303 LA - en ID - 10_1051_mmnp_20138303 ER -
%0 Journal Article %A X. Liu %A B. Lou %T Asymptotic Behavior of Solutions to Diffusion Problems with Robin and Free Boundary Conditions %J Mathematical modelling of natural phenomena %D 2013 %P 18-32 %V 8 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138303/ %R 10.1051/mmnp/20138303 %G en %F 10_1051_mmnp_20138303
X. Liu; B. Lou. Asymptotic Behavior of Solutions to Diffusion Problems with Robin and Free Boundary Conditions. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 18-32. doi: 10.1051/mmnp/20138303
[1] J. Reine Angew. Math. 1988 79 96
[2] , Adv. in Math. 1978 33 76
[3] G. Bunting, Y. Du, K. Krakowski. Spreading speed revisited: Analysis of a free boundary model. Netw. Heterog. Media., (to appear).
[4] , SIAM J. Math. Anal. 2010 377 405
[5] Y. Du, B. D. Lou. Spreading and vanishing in nonlinear diffusion problems with free boundaries. Preprint.
[6] , J. Eur. Math. Soc. 2010 279 312
[7] , Adv. Math. Sci. Appl. 2011 467 492
[8] Nonlinearity 2007 1883 1892
Cité par Sources :