Voir la notice de l'article provenant de la source EDP Sciences
N. Apreutesei 1 ; A. Tosenberger 2 ; V. Volpert 2
@article{MMNP_2013_8_3_a1, author = {N. Apreutesei and A. Tosenberger and V. Volpert}, title = {Existence of {Reaction-Diffusion} {Waves} with {Nonlinear} {Boundary} {Conditions}}, journal = {Mathematical modelling of natural phenomena}, pages = {2--17}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2013}, doi = {10.1051/mmnp/20138302}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138302/} }
TY - JOUR AU - N. Apreutesei AU - A. Tosenberger AU - V. Volpert TI - Existence of Reaction-Diffusion Waves with Nonlinear Boundary Conditions JO - Mathematical modelling of natural phenomena PY - 2013 SP - 2 EP - 17 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138302/ DO - 10.1051/mmnp/20138302 LA - en ID - MMNP_2013_8_3_a1 ER -
%0 Journal Article %A N. Apreutesei %A A. Tosenberger %A V. Volpert %T Existence of Reaction-Diffusion Waves with Nonlinear Boundary Conditions %J Mathematical modelling of natural phenomena %D 2013 %P 2-17 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138302/ %R 10.1051/mmnp/20138302 %G en %F MMNP_2013_8_3_a1
N. Apreutesei; A. Tosenberger; V. Volpert. Existence of Reaction-Diffusion Waves with Nonlinear Boundary Conditions. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 2-17. doi : 10.1051/mmnp/20138302. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138302/
[1] N. Apreutesei, V. Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, in press.
[2] J. Math. Biol. 2012 349 374
, , ,[3] M.A. Krasnoselskii, P.P. Zabreiko. Geometrical methods of nonlinear analysis. Springer-Verlag, New York, 1984.
[4] Math. Nachr. 2008 253 271
[5] A. Volpert, Vit. Volpert, Vl. Volpert. Traveling wave solutions of parabolic systems. Translation of Mathematical Monographs, Vol. 140, Amer. Math. Society, Providence, 1994.
[6] Asymptotic Analysis 2000 111 134
,[7] V. Volpert. Elliptic partial differential equations. Volume 1. Fredholm theory of elliptic problems in unbounded domains. Birkhäuser, 2011.
Cité par Sources :