Existence of Reaction-Diffusion Waves with Nonlinear Boundary Conditions
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 2-17.

Voir la notice de l'article provenant de la source EDP Sciences

The paper is devoted to a reaction-diffusion equation in an infinite two-dimensional strip with nonlinear boundary conditions. The existence of travelling waves is proved in the bistable case by the Leray-Schauder method. It is based on a topological degree for elliptic problems in unbounded domains and on a priori estimates of solutions.
DOI : 10.1051/mmnp/20138302

N. Apreutesei 1 ; A. Tosenberger 2 ; V. Volpert 2

1 Department of Mathematics, “Gheorghe Asachi" Technical University Bd. Carol. I, 700506 Iasi, Romania
2 Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
@article{MMNP_2013_8_3_a1,
     author = {N. Apreutesei and A. Tosenberger and V. Volpert},
     title = {Existence of {Reaction-Diffusion} {Waves} with {Nonlinear} {Boundary} {Conditions}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {2--17},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2013},
     doi = {10.1051/mmnp/20138302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138302/}
}
TY  - JOUR
AU  - N. Apreutesei
AU  - A. Tosenberger
AU  - V. Volpert
TI  - Existence of Reaction-Diffusion Waves with Nonlinear Boundary Conditions
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 2
EP  - 17
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138302/
DO  - 10.1051/mmnp/20138302
LA  - en
ID  - MMNP_2013_8_3_a1
ER  - 
%0 Journal Article
%A N. Apreutesei
%A A. Tosenberger
%A V. Volpert
%T Existence of Reaction-Diffusion Waves with Nonlinear Boundary Conditions
%J Mathematical modelling of natural phenomena
%D 2013
%P 2-17
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138302/
%R 10.1051/mmnp/20138302
%G en
%F MMNP_2013_8_3_a1
N. Apreutesei; A. Tosenberger; V. Volpert. Existence of Reaction-Diffusion Waves with Nonlinear Boundary Conditions. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 3, pp. 2-17. doi : 10.1051/mmnp/20138302. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138302/

[1] N. Apreutesei, V. Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, in press.

[2] N. El Khatib, S. Genieys, B. Kazmierczak, V. Volpert J. Math. Biol. 2012 349 374

[3] M.A. Krasnoselskii, P.P. Zabreiko. Geometrical methods of nonlinear analysis. Springer-Verlag, New York, 1984.

[4] M. Kyed Math. Nachr. 2008 253 271

[5] A. Volpert, Vit. Volpert, Vl. Volpert. Traveling wave solutions of parabolic systems. Translation of Mathematical Monographs, Vol. 140, Amer. Math. Society, Providence, 1994.

[6] V. Volpert, A. Volpert Asymptotic Analysis 2000 111 134

[7] V. Volpert. Elliptic partial differential equations. Volume 1. Fredholm theory of elliptic problems in unbounded domains. Birkhäuser, 2011.

Cité par Sources :