Generalized Elastic Model: Fractional Langevin Description, Fluctuation Relation and Linear Response
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 2, pp. 127-143.

Voir la notice de l'article provenant de la source EDP Sciences

The Generalized Elastic Model is a linear stochastic model which accounts for the behaviour of many physical systems in nature, ranging from polymeric chains to single-file systems. If an external perturbation is exerted only on a single point x⋆ (tagged probe), it propagates throughout the entire system. Within the fractional Langevin equation framework, we study the effect of such a perturbation, in cases of a constant force applied. We report most of the results arising from our previous analysis and, in the present work, we show that the Fox H-functions formalism provides a compact, elegant and useful tool for the study of the scaling properties of any observable. In particular we show how the generalized Kubo fluctuation relations can be expressed in terms of H-functions.
DOI : 10.1051/mmnp/20138209

A. Taloni 1 ; A. Chechkin 2, 3 ; J. Klafter 4

1 CNR-IENI, Via R. Cozzi 53, 20125 Milano, Italy
2 Max-Planck-Institute for Physics of Complex Systems, Noethnitzer Str. 38 D-91187 Dresden, Germany
3 Akhiezer Institute for Theoretical Physics, NSC KIPT, Kharkov 61108, Ukraine
4 School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
@article{MMNP_2013_8_2_a8,
     author = {A. Taloni and A. Chechkin and J. Klafter},
     title = {Generalized {Elastic} {Model:} {Fractional} {Langevin} {Description,} {Fluctuation} {Relation} and {Linear} {Response}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {127--143},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2013},
     doi = {10.1051/mmnp/20138209},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138209/}
}
TY  - JOUR
AU  - A. Taloni
AU  - A. Chechkin
AU  - J. Klafter
TI  - Generalized Elastic Model: Fractional Langevin Description, Fluctuation Relation and Linear Response
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 127
EP  - 143
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138209/
DO  - 10.1051/mmnp/20138209
LA  - en
ID  - MMNP_2013_8_2_a8
ER  - 
%0 Journal Article
%A A. Taloni
%A A. Chechkin
%A J. Klafter
%T Generalized Elastic Model: Fractional Langevin Description, Fluctuation Relation and Linear Response
%J Mathematical modelling of natural phenomena
%D 2013
%P 127-143
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138209/
%R 10.1051/mmnp/20138209
%G en
%F MMNP_2013_8_2_a8
A. Taloni; A. Chechkin; J. Klafter. Generalized Elastic Model: Fractional Langevin Description, Fluctuation Relation and Linear Response. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 2, pp. 127-143. doi : 10.1051/mmnp/20138209. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138209/

[1] A. Taloni, A. Chechkin, J. Klafter Phys. Rev. Lett. 2010

[2] A. Saichev, M. Zazlawsky Chaos 1997 753 765

[3] S. G. Samko, A. A. Kilbas, O. I. Marichev. Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam, 1993.

[4] M. Doi, S. F. Edwards. The Theory of Polymer Dynamics. Clarendon, Oxford, 1986.

[5] R. Granek J. Phys. II France 1997 1761 1788

[6] E. Farge, A. C. Maggs Macromol. 1993 5041 5044 Phys. Rev. Lett. 1998 1106 1109 Phys. Rev. Lett. 1996 4470 4473

[7] S. F. Edwards, D. R. Wilkinson Proc. R. Soc. London A 1982 17 31

[8] B. H. Zimm J. Chem. Phys. 1956 269 278

[9] P. E. Rouse J. Chem. Phys. 1953 1272 1280

[10] E. Freyssingeas, D. Roux, F. Nallet J. Phys. II France 1997 913 929 Phys. Rev. Lett. 2000 457 460

[11] R. Granek, J. Klafter Europhys. Lett. 2001 15 21

[12] A. G. Zilman, R. Granek Chem. Phys. 2002 195 204

[13] A. G. Zilman, R. Granek Phys. Rev. E 1998 R2725 R2728

[14] P. C. Searson, R. Li, K. Sieradzki Phys. Rev. Lett. 1995 1395 1398 Phys. Rev. Lett. 1996 4096 4096 Phys. Rev. Lett. 2001 3700 3703

[15] J. Krug, H. Kallabis, S. N. Majumdar, S. J. Cornell, A. J. Bray, C. Sire Phys. Rev. E 1997 2702 2712

[16] Z. Toroczkai, E. D. Williams Phys. Today 1998

[17] S. Majaniemi, T. Ala-Nissila, J. Krug Phys. Rev. B 1995 8071 8082

[18] H. Gao, J. R. Rice J. Appl. Mech. 1989 828 836

[19] J. F. Joanny, P. G. De Gennes J. Chem. Phys. 1984 552 549

[20] F. Mainardi, P. Pironi Extr. Math. 1996 140 154 Modern Problems of Statistical Physics 2009 3 23

[21] E. Lutz Phys. Rev. E 2001 051106-1-4

[22] B. B. Mandelbrot, J. W. Van Ness SIAM Rev. 1968 422 437

[23] S. C. Kou, X. S. Xie Phys. Rev. Lett. 2004 Annals Applied Statistics 2008 501 535

[24] S. Burov, E. Barkai Phys. Rev. Lett. 2008

[25] K. Sau Fa Phys. Rev. E 2006

[26] K. Sau Fa Eur. Phys. J. E 2007 139 143

[27] I. Goychuk Adv. Chem. Phys. 2012 187 253

[28] A. Taloni, M. A. Lomholt Phys. Rev. E 2008 051116-1 8

[29] L. Lizana, T. Ambjornsson, A. Taloni, E. Barkai, M. A. Lomholt Phys. Rev. E 2010 051118-1 8

[30] D. Panja. Generalized Langevin equation formulation for anomalous polymer dynamics. J. Stat. Mech., (2010), L02001-1-8. D. Panja. Anomalous polymer dynamics is non-Markovian: memory effects and the generalized Langevin equation formulation. J. Stat. Mech., (2010), P06011-1-34.

[31] A. Taloni, A. Chechkin, J. Klafter Phys. Rev. E 2010 061104-1 15

[32] C. Fox Trans. Amer. Math. Soc. 1961 395 429

[33] A. M. Mathai, R. K. Saxena. The H-Function with Application in Statistics and Other Discplines. Wiley Eastern Limited, New Delhi-Bangalore-Bombay, 1978.

[34] R. Hilfer (Ed.). Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000.

[35] W. G. Gloeckle, T. F. Nonnenmacher Macromolecules 1991 6426 6434 Journ. Stat. Phys. 1993 741 757

[36] R. Metzler, W. G. Gloeckle, T. F. Nonnenmacher Physica A 1994 13 24 Phys. Rep. 2000 1 77

[37] F. Mainardi, G. Pagnini, R. K. Saxena Journ. Comput. Applied Math. 2005 321 331

[38] S. I. Denisov, S. B. Yuste, Yu. S. Bystrik, H. Kantz, K. Lindenberg Phys. Rev. E 2011

[39] R. K. Saxena, A. M. Mathai, H. J. Haubold Astrophys Space Sci 2006 289 296

[40] M. O. Vlad, R. Metzler, J. Ross Phys. Rev. E 1998 6497 6505

[41] N. Laskin Phys. Lett. A 2000 298 305 Fractals and quantum mechanics Chaos 2000 780 790 Phys. Rev. E 2000 3135 3145 Levy flights over quantum paths. Communications Nonlinear Sci and Numer Simulations 2007 2 18 Green’s function for the time-dependent scattering problem in the fractional quantum mechanics Journ. Math. Phys. 2011

[42] A. A. Kilbas, M. Saigo, H-Transforms. Theory and Applications. Chapman and Hall, London, 2004.

[43] A. M. Mathai, R. K. Saxena, H. J. Haubold, The H - Function. Theory and Applications. Springer, New York, 2010.

[44] A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev. Integral and Series. Vol.3: More special Functions. Gordon and Breach Science, Amsterdam, 1990.

[45] A. Taloni, A. Chechkin, J. Klafter Phys. Rev. E 2011

[46] E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. Mackintosh, D. Chatenay Phys. Rev. Lett. 2000 457 460 Phys. Rev. E 2001

[47] Chau-Hwang Leef Phys. Rev. Lett. 2009

[48] I. Podlubny. Fractional Differential Equations. Academic Press, New York, 1999.

[49] M. Caputo Geophys. J. R. Astr. Soc. 1967 529 539

[50] D. C. Champeney. Fourier Transforms and Physical Applications. Academic Press, London, 1973.

[51] A. Taloni, A. Chechkin, J. Klafter Europhys. Lett. 2012

[52] A. L. Barabasi, H. E. Stanley. Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge, 1994.

[53] P. Meakin. Fractal and scaling growth far from equilibrium. Cambridge University Press, Cambridge, 1998.

[54] F. Family, T. Vicsek J. Phys. A: Math. Gen. 1985 L75 L81

[55] M. Abramowitz, I. Stegun. Handbook of Mathematical Functions. Dover, New York, 1964.

[56] A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev. Integrals and Series. Vol.I: Elementary Functions. New York: Gordon and Breach, 1986.

[57] I. M. Gelfand, G. E. Shilov, Generalized Functions. Academic Press, 1964.

[58] A. W. J. Erdelyi. Asymptotic Expansions. Dover, New York, 1956.

[59] R. Kubo, M. Toda, N. Hatsushime. Statistical Physics II: Nonequilibrium Statistical Mechanics. Springer, Berlin, 1991.

[60] U. M. B. Marconi, A. Puglisi, L. Rondoni, A. Vulpiani Phys. Rep. 2008 111 195 J. Stat. Mech. 2009 P07024-1-22

[61] E. Barkai, R. Silbey Phys. Rev. Lett. 2009

[62] I. S. Gradshtein, I. M. Rizhikl. Tables of Integrals. Series and Products. Academic Press, New York, 2007.

[63] R. Santachiara, A Rosso, W Krauth. Universal width distributions in non-Markovian Gaussian processes. J. Stat. Mech., (2007), P02009–.

[64] G. H. Hardy. Divergent Series. Clarendon Press, Oxford, 1949.

[65] F. W. J. Olver. Asymptotics and Special Functions. Academic Press, New York, 1974.

Cité par Sources :