Elucidating the Role of Subdiffusion and Evanescence in the Target Problem: Some Recent Results
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 2, pp. 100-113.

Voir la notice de l'article provenant de la source EDP Sciences

We present an overview of recent results for the classic problem of the survival probability of an immobile target in the presence of a single mobile trap or of a collection of uncorrelated mobile traps. The diffusion exponent of the traps is taken to be either γ = 1, associated with normal diffusive motion, or 0  γ  1, corresponding to subdiffusive motion. We consider traps that can only die upon interaction with the target and, alternatively, traps that may die due to an additional evanescence process even before hitting the target. The evanescence reaction is found to completely modify the survival probability of the target. Such evanescence processes are important in systems where the addition of scavenger molecules may result in the removal of the majority species, or ones where the mobile traps have a finite intrinsic lifetime.
DOI : 10.1051/mmnp/20138207

E. Abad 1 ; S. B. Yuste 2 ; K. Lindenberg 3

1 Departamento de Física Aplicada, Centro Universitario de Mérida, Universidad de Extremadura, E-06800 Mérida, Spain
2 Departamento de Física, Universidad de Extremadura, E-06071 Badajoz, Spain
3 Department of Chemistry and Biochemistry, and BioCircuits Institute, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0340, USA
@article{MMNP_2013_8_2_a6,
     author = {E. Abad and S. B. Yuste and K. Lindenberg},
     title = {Elucidating the {Role} of {Subdiffusion} and {Evanescence} in the {Target} {Problem:} {Some} {Recent} {Results}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {100--113},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2013},
     doi = {10.1051/mmnp/20138207},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138207/}
}
TY  - JOUR
AU  - E. Abad
AU  - S. B. Yuste
AU  - K. Lindenberg
TI  - Elucidating the Role of Subdiffusion and Evanescence in the Target Problem: Some Recent Results
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 100
EP  - 113
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138207/
DO  - 10.1051/mmnp/20138207
LA  - en
ID  - MMNP_2013_8_2_a6
ER  - 
%0 Journal Article
%A E. Abad
%A S. B. Yuste
%A K. Lindenberg
%T Elucidating the Role of Subdiffusion and Evanescence in the Target Problem: Some Recent Results
%J Mathematical modelling of natural phenomena
%D 2013
%P 100-113
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138207/
%R 10.1051/mmnp/20138207
%G en
%F MMNP_2013_8_2_a6
E. Abad; S. B. Yuste; K. Lindenberg. Elucidating the Role of Subdiffusion and Evanescence in the Target Problem: Some Recent Results. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 2, pp. 100-113. doi : 10.1051/mmnp/20138207. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138207/

[1] E. Abad, S. B. Yuste, K. Lindenberg Phys. Rev. E 2010 031115

[2] E. Abad, S.B. Yuste, K. Lindenberg Phys. Rev. E 2012 061120

[3] M. Abramowitz, I. A. Stegun. Handbook of Mathematical Functions. Dover, New York, 1965.

[4] A. V. Barzykin, M. Tachiya J. Chem. Phys. 1993 9591 9597

[5] O. Bénichou, M. Moreau, G. Oshanin Phys. Rev. E 2000 3388 3406

[6] A. M. Berezhkovskii, D.-Y. Yang, S. H. Lin, Yu. A. Makhnovskii, S.-Y. Sheu J. Chem. Phys. 1997 6985 6998

[7] R. Borrego, E. Abad, S.B. Yuste Phys. Rev. E 2009 061121

[8] M. Bramson, J. L. Lebowitz Phys. Rev. Lett. 1988 2397 2400 J. Stat. Phys. 1991 297 372

[9] A. J. Bray, R. A. Blythe Phys. Rev. Lett. 2002 150601

[10] A.J. Bray, S. N. Majumdar, R. A. Blythe Phys. Rev. E 2003 060102(R)

[11] S. F. Burlatsky, G. Oshanin, A. A. Ovchinnikov Phys. Lett. A 1989 245 248

[12] L-C. Chen, R. Sun, A Monotonicity Result for the Range of a Perturbed Random Walk. arXiv:1203.1389v2 [math.PR]

[13] F. C. Collins, G. E. Kimball J. Colloid. Sci. 1949 425 437

[14] D. V. Donsker, S. R. S. Varadhan Commun. Pure Appl. Math. 1975 525 565 Commun. Pure Appl. Math. 1979 721 747

[15] J. D. Eaves, D. R. Reichman J. Phys. Chem. B 2008 4283 4289

[16] J. Franke, S. Majumdar. Survival probability of an immobile target surrounded by mobile traps. J. Stat. Mech. (2012) P05024.

[17] S. H. Glarum J. Chem. Phys. 1960 639 643

[18] D. S. Grebenkov J. Chem. Phys. 2010 034104

[19] B. I. Henry, T. A. M. Langlands, S. L. Wearne Phys. Rev. E 2006 031116

[20] F. Den Hollander, K.E. Shuler J. Stat. Phys. 1992 13 31

[21] B. H. Hughes. Random Walks and Random Environments. Volume 1: Random Walks. Clarendon Press, Oxford, 1995.

[22] J. Kim, Y. Jung, J. Jeon, S. Lee J. Chem. Phys. 1996 5784 5797

[23] M. A. Lomholt, I. M. Zaid, R. Metzler Phys. Rev. Lett. 2007 200603

[24] A. M. Mathai, R. K. Saxena. The H-function with Applications in Statistics and Other Disciplines. Wiley, New York, 1978.

[25] See ch. 3 in V. Méndez, S. Fedotov, W. Horsthemke. Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities. Springer, Berlin, 2010.

[26] R. Metzler, J. Klafter Phys. Rep. 2000 1 77

[27] M. Moreau, G. Oshanin, O. Bénichou, M. Coppey Phys. Rev. E 2003 045104(R)

[28] G. Oshanin, O. Bénichou, M. Coppey, M. Moreau Phys. Rev. E 2002 060101(R)

[29] G. Oshanin, O. Vasilyev, P. L. Krapivsky, J. Klafter PNAS 2009 13696 13701

[30] I. Podlubny. Fractional Differential Equations. Academic Press, San Diego, 1999.

[31] S. A. Rice. Diffusion-limited Reactions. Elsevier. Amsterdam, 1985.

[32] J. J. Ruiz-Lorenzo, S. B. Yuste, K. Lindenberg J. Phys.: Condens. Matter. 2007 065120

[33] H. Sano, M. Tachiya J. Chem. Phys. 1979 1276 1282

[34] K. Seki, A. I. Shushin, M. Wojcik, M. Tachiya J. Phys.: Condens. Matter 2007 065117

[35] K. Seki, M. Wojcik, M. Tachiya J. Chem. Phys. 2003 2165 2170

[36] V. P. Shkilev J. Exp. Theor. Phys. (Springer) 2011 1071 1076

[37] M. F. Shlesinger, E. W. Montroll PNAS 1984 1280 1283

[38] M. Smoluchowski Z. Phys. Chem. 1917 129 168

[39] I. M. Sokolov, M. G. W. Schmidt, F. Sagués Phys. Rev. E 2006 031102 Phys. Rev. E 2006 031116 Phys. Rev. E 2006 066118 J. Phys.: Condens. Matter 2007 065118 Stationary Fronts in an A + B → 0 Reaction under Subdiffusion. Phys. Rev. Lett. 2008 108304 Phys. Rev. E 2008 026116

[40] S. B. Yuste, E. Abad, K. Lindenberg. Reactions in Subdiffusive Media and Associated Fractional Equations in Fractional Dynamics. Recent Advances. J. Klafter, S. C. Lim, and R. Metzler (Eds.). World Scientific, Singapore, 2011.

[41] S. B. Yuste, K. Lindenberg Phys. Rev. E 2005 061103

[42] S. B. Yuste, K. Lindenberg Phys. Rev. E 2007 051114

[43] S. B. Yuste, G. Oshanin, K. Lindenberg, O. Bénichou, J. Klafter Phys. Rev. E 2008 021105

[44] S. B. Yuste, J. J. Ruiz-Lorenzo, K. Lindenberg Phys. Rev. E 2006 046119

Cité par Sources :