Non-homogeneous Random Walks, Subdiffusive Migration of Cells and Anomalous Chemotaxis
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 2, pp. 28-43.

Voir la notice de l'article provenant de la source EDP Sciences

This paper is concerned with a non-homogeneous in space and non-local in time random walk model for anomalous subdiffusive transport of cells. Starting with a Markov model involving a structured probability density function, we derive the non-local in time master equation and fractional equation for the probability of cell position. We derive the fractional Fokker-Planck equation for the density of cells and apply this equation to the anomalous chemotaxis problem. We show the structural instability of fractional subdiffusive equation with respect to the partial variations of anomalous exponent. We find the criteria under which the anomalous aggregation of cells takes place in the semi-infinite domain.
DOI : 10.1051/mmnp/20138203

S. Fedotov 1 ; A. O. Ivanov 2 ; A. Y. Zubarev 2

1 School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK
2 Department of Mathematical Physics, Ural Federal University, Ekaterinburg, 620083, Russia
@article{MMNP_2013_8_2_a2,
     author = {S. Fedotov and A. O. Ivanov and A. Y. Zubarev},
     title = {Non-homogeneous {Random} {Walks,} {Subdiffusive} {Migration} of {Cells} and {Anomalous} {Chemotaxis}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {28--43},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2013},
     doi = {10.1051/mmnp/20138203},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138203/}
}
TY  - JOUR
AU  - S. Fedotov
AU  - A. O. Ivanov
AU  - A. Y. Zubarev
TI  - Non-homogeneous Random Walks, Subdiffusive Migration of Cells and Anomalous Chemotaxis
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 28
EP  - 43
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138203/
DO  - 10.1051/mmnp/20138203
LA  - en
ID  - MMNP_2013_8_2_a2
ER  - 
%0 Journal Article
%A S. Fedotov
%A A. O. Ivanov
%A A. Y. Zubarev
%T Non-homogeneous Random Walks, Subdiffusive Migration of Cells and Anomalous Chemotaxis
%J Mathematical modelling of natural phenomena
%D 2013
%P 28-43
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138203/
%R 10.1051/mmnp/20138203
%G en
%F MMNP_2013_8_2_a2
S. Fedotov; A. O. Ivanov; A. Y. Zubarev. Non-homogeneous Random Walks, Subdiffusive Migration of Cells and Anomalous Chemotaxis. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 2, pp. 28-43. doi : 10.1051/mmnp/20138203. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138203/

[1] E. Abad, S. B. Yuste, K. Lindenberg Phys. Rev. E 2010 031115

[2] Anomalous transport: foundations and applications. Eds. R. Klages, G. Radons, I. M. Sokolov (Wiley-VCH, 2008).

[3] D. Campos, S. Fedotov, V. Méndez Phys. Rev. E 2008 061130

[4] R. E. Baker, Ch. A. Yates, R. Erban Bull. Math. Biology 2010 719 762

[5] A. V. Chechkin, R. Gorenflo, I. M. Sokolov J. Phys. A: Math. Gen 2005 L679

[6] D. R. Cox, H. D. Miller. The Theory of Stochastic Processes (Methuen, London, 1965).

[7] P. Dieterich, R. Klages, R. Preuss, A. Schwab PNAS J 2008 459 463

[8] R. Erban, H. Othmer SIAM J. Appl. Math. 2004 361 391

[9] S. Fedotov, A. Iomin Phys. Rev. Lett. 2007 118101

[10] S. Fedotov, A. Iomin Phys. Rev. E 2008 031911

[11] S. Fedotov Phys. Rev. E 2010 011117

[12] S. Fedotov Phys. Rev. E 2011 021110

[13] S. Fedotov, A. Iomin, L. Ryashko Phys. Rev. E 2011 061131

[14] S. Fedotov, S. Falconer Rev. E 2012 031132

[15] W. Feller. An introduction to probability theory and its applications. Volume 2 (Wiley, NY, 1971).

[16] T. Fenchel, N. Blackburn Protist 1999 325 336

[17] B. I. Henry, T. A. M. Langlands Phys. Rev. E 2010 051102

[18] B. I. Henry, T. A. M. Langlands, S. L. Wearne Phys. Rev. E 2006 031116

[19] Th. Hillen, H. G. Othmer SIAM J. Appl. Math. 2000 751 775

[20] A. Iomin Eur. Phys. J. E 2012 42

[21] S. T. Johnston, M. J. Simpson, R. E. Baker Phys. Rev. E 2012 051922

[22] N. G. Van Kampen Physica A 1979 435 453

[23] E. Khain, M. Katakowski, S. Hopkins, A. Szalad, X. Zheng, F. Jiang, M. Chopp Phys. Rev. E 2011 031920

[24] M. M. Meerschaert, A. Sikorskii. Stochastic models for fractional calculus (De Gruyter, Berlin, 2012).

[25] R. Metzler, E. Barkai, J. Klafter Phys. Rev. Lett. 1999 3563 3567

[26] R. Metzler, J. Klafter Phys. Reports 2000 1 77

[27] C. T. Mierke, B. Frey, M. Fellner, M. Herrmann, B. Fabry Integrin α5β1 facilitates cancer cell invasion through enhanced contractile forces J. Cell Science 2011 369 383

[28] V. Méndez, S. Fedotov, W. Horsthemke, Reaction-transport systems: mesoscopic foundations, fronts, and spatial instabilities. (Springer, Berlin 2010).

[29] V. Méndez, D. Campos, I. Pagonabarraga, S. Fedotov J. Theor. Biology 2012 113 120

[30] Y. Nec, A. A. Nepomnyashchy J. Phys. A: Math. Theor. 2007 14687

[31] H. G. Othmer, S. R. Dunbar, W. Alt J. Math. Biol. 1988 263 298

[32] H. G. Othmer, A. Stevens SIAM J. Appl. Math. 1997 1044 1081

[33] E. Orsingher, F. Polito Bernoulli 2011 114 137

[34] A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, A. R. Horwitz Science 2003 1704 1709

[35] F. Sagues, V. P. Shkilev, I. M. Sokolov Reaction-subdiffusion equations for the A ⇆ B reaction Phys. Rev. E 2008 032102

[36] V. P. Shkilev J. Exp. Theor. Physics 2011 711 716

[37] V. A. Volpert, Y. Nec, A. A. Nepomnyashchy Phil. Trans. R. Soc. A 2013 20120179

Cité par Sources :