Boundedness of Pseudo-Differential Operators on Lp, Sobolev and Modulation Spaces
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 175-192.

Voir la notice de l'article provenant de la source EDP Sciences

We introduce new classes of modulation spaces over phase space. By means of the Kohn-Nirenberg correspondence, these spaces induce norms on pseudo-differential operators that bound their operator norms on Lp–spaces, Sobolev spaces, and modulation spaces.
DOI : 10.1051/mmnp/20138113

S. Molahajloo 1 ; G.E. Pfander 2

1 Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario K7L3N6, Canada
2 School of Engineering and Science, Jacobs University, 28759 Bremen, Germany
@article{MMNP_2013_8_1_a12,
     author = {S. Molahajloo and G.E. Pfander},
     title = {Boundedness of {Pseudo-Differential} {Operators} on {Lp,} {Sobolev} and {Modulation} {Spaces}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {175--192},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     doi = {10.1051/mmnp/20138113},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138113/}
}
TY  - JOUR
AU  - S. Molahajloo
AU  - G.E. Pfander
TI  - Boundedness of Pseudo-Differential Operators on Lp, Sobolev and Modulation Spaces
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 175
EP  - 192
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138113/
DO  - 10.1051/mmnp/20138113
LA  - en
ID  - MMNP_2013_8_1_a12
ER  - 
%0 Journal Article
%A S. Molahajloo
%A G.E. Pfander
%T Boundedness of Pseudo-Differential Operators on Lp, Sobolev and Modulation Spaces
%J Mathematical modelling of natural phenomena
%D 2013
%P 175-192
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138113/
%R 10.1051/mmnp/20138113
%G en
%F MMNP_2013_8_1_a12
S. Molahajloo; G.E. Pfander. Boundedness of Pseudo-Differential Operators on Lp, Sobolev and Modulation Spaces. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 175-192. doi : 10.1051/mmnp/20138113. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138113/

[1] A. Benedek, R. Panzone Duke Math. J. 1961 301 324

[2] S. Bishop J. Math. Anal. Appl. 363 2010 255 264

[3] V. Catană, S. Molahajloo, M. W. Wong. Lp-Boundedness of Multilinear Pseudo-Differential Operators, in Pseudo-Differential Operators : Complex Analysis and Partial Differential Equations . Operator Theory : Advances and Applications. 205, Birkhäuser, 2010, 167–180.

[4] E. Cordero, F. Nicola J. Funct. Anal. 2008 506 534

[5] E. Cordero, F. Nicola Int. Math. Res. Notices 2010 1860 1893

[6] F. Concetti, J. Toft Fields Institute Communications 2007 255 264

[7] W. Czaja J. Math. Anal. Appl. 2003 389 396

[8] H. G. Feichtinger Rocky Mountain J. Math. 1989 113 126

[9] H. G. Feichtinger Monatsh. Math. 1981 269 289

[10] H. G. Feichtinger, K. Gröchenig J. Funct. Anal. 1989 307 340

[11] H. G. Feichtinger, K. Gröchenig Monatsh. Math. 1989 129 148

[12] H. G. Feichtinger, K. Gröchenig. Gabor Wavelets and the Heisenberg Group : Gabor Expansions and Short Time Fourier Transform from the Group Theoretical Point of View, in Wavelets : a tutorial in theory and applications. Academic Press, Boston, 1992.

[13] H. G. Feichtinger, K. Gröchenig J. Funct. Anal. 1997 464 495

[14] K. Gröchenig. Foundation of Time-Frequency Analysis. Brikhäuser, Boston, 2001.

[15] K. Gröchenig, C. Heil Osaka J. Math. 2004 681 691

[16] K. Gröchenig, C. Heil Integr. Equat. Oper. th. 1999 439 457

[17] Y. M. Hong, G. E. Pfander Appl. Comput. Harmon. Anal. 2010 214 231

[18] L. Hörmander. The Analysis of Linear Partial Differential Operators I. Second Edition, Springer-Verlag, Berlin, 1990.

[19] L. Hörmander Comm. Pure Appl. Math. 1979 360 444

[20] I. L. Hwang, R. B. Lee Trans. Amer. Math. Soc. 1994 489 510

[21] H. Kumano-Go. Pseudo-Differential Operators. Translated by Hitoshi Kumano-Go, Rémi Vaillancourt and Michihiro Nagase, MIT Press, 1982.

[22] K. A. Okoudjou J. Func. Spaces Appl. 2009 33 41

[23] G. E. Pfander, D. Walnut Sampl. Theory Signal Image Process. 2006 151 168

[24] G. E. Pfander. Sampling of Operators. arxiv : 1010.6165.

[25] J. Sjöstrand Math. Res. Lett. 1994 185 192

[26] J. Sjöstrand. Wiender Type Algebras of Pseudodifferential Operators, in Séminaire Équations aux dérivées Partielles. 1994-1995, exp. 4, 1–19.

[27] J. Toft J. Funct. Anal. 2004 399 429

[28] J. Toft Ann. Glob. Anal. Geom. 2004 73 106

[29] J. Toft Integral Transforms and Special Functions 2006 193 198

[30] J. Toft CUBO. 2009 87 107

[31] J. Toft, S. Pilipovic, N. Teofanov Part II, J. Pseudo-Differ. Oper. Appl. 2010 341 376

[32] M. W. Wong. An Introduction to Pseudo-Differential Operators. Second Edition, World Scientific, 1999.

[33] M. W. Wong Ark. Mat. 1983 271 282

[34] M. W. Wong. Weyl Transforms. Springer-Verlag, 1998.

Cité par Sources :