Voir la notice de l'article provenant de la source EDP Sciences
S. Molahajloo 1 ; G.E. Pfander 2
@article{MMNP_2013_8_1_a12, author = {S. Molahajloo and G.E. Pfander}, title = {Boundedness of {Pseudo-Differential} {Operators} on {Lp,} {Sobolev} and {Modulation} {Spaces}}, journal = {Mathematical modelling of natural phenomena}, pages = {175--192}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2013}, doi = {10.1051/mmnp/20138113}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138113/} }
TY - JOUR AU - S. Molahajloo AU - G.E. Pfander TI - Boundedness of Pseudo-Differential Operators on Lp, Sobolev and Modulation Spaces JO - Mathematical modelling of natural phenomena PY - 2013 SP - 175 EP - 192 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138113/ DO - 10.1051/mmnp/20138113 LA - en ID - MMNP_2013_8_1_a12 ER -
%0 Journal Article %A S. Molahajloo %A G.E. Pfander %T Boundedness of Pseudo-Differential Operators on Lp, Sobolev and Modulation Spaces %J Mathematical modelling of natural phenomena %D 2013 %P 175-192 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138113/ %R 10.1051/mmnp/20138113 %G en %F MMNP_2013_8_1_a12
S. Molahajloo; G.E. Pfander. Boundedness of Pseudo-Differential Operators on Lp, Sobolev and Modulation Spaces. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 175-192. doi : 10.1051/mmnp/20138113. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138113/
[1] Duke Math. J. 1961 301 324
,[2] J. Math. Anal. Appl. 363 2010 255 264
[3] V. Catană, S. Molahajloo, M. W. Wong. Lp-Boundedness of Multilinear Pseudo-Differential Operators, in Pseudo-Differential Operators : Complex Analysis and Partial Differential Equations . Operator Theory : Advances and Applications. 205, Birkhäuser, 2010, 167–180.
[4] J. Funct. Anal. 2008 506 534
,[5] Int. Math. Res. Notices 2010 1860 1893
,[6] Fields Institute Communications 2007 255 264
,[7] J. Math. Anal. Appl. 2003 389 396
[8] Rocky Mountain J. Math. 1989 113 126
[9] Monatsh. Math. 1981 269 289
[10] J. Funct. Anal. 1989 307 340
,[11] Monatsh. Math. 1989 129 148
,[12] H. G. Feichtinger, K. Gröchenig. Gabor Wavelets and the Heisenberg Group : Gabor Expansions and Short Time Fourier Transform from the Group Theoretical Point of View, in Wavelets : a tutorial in theory and applications. Academic Press, Boston, 1992.
[13] J. Funct. Anal. 1997 464 495
,[14] K. Gröchenig. Foundation of Time-Frequency Analysis. Brikhäuser, Boston, 2001.
[15] Osaka J. Math. 2004 681 691
,[16] Integr. Equat. Oper. th. 1999 439 457
,[17] Appl. Comput. Harmon. Anal. 2010 214 231
,[18] L. Hörmander. The Analysis of Linear Partial Differential Operators I. Second Edition, Springer-Verlag, Berlin, 1990.
[19] Comm. Pure Appl. Math. 1979 360 444
[20] Trans. Amer. Math. Soc. 1994 489 510
,[21] H. Kumano-Go. Pseudo-Differential Operators. Translated by Hitoshi Kumano-Go, Rémi Vaillancourt and Michihiro Nagase, MIT Press, 1982.
[22] J. Func. Spaces Appl. 2009 33 41
[23] Sampl. Theory Signal Image Process. 2006 151 168
,[24] G. E. Pfander. Sampling of Operators. arxiv : 1010.6165.
[25] Math. Res. Lett. 1994 185 192
[26] J. Sjöstrand. Wiender Type Algebras of Pseudodifferential Operators, in Séminaire Équations aux dérivées Partielles. 1994-1995, exp. 4, 1–19.
[27] J. Funct. Anal. 2004 399 429
[28] Ann. Glob. Anal. Geom. 2004 73 106
[29] Integral Transforms and Special Functions 2006 193 198
[30] CUBO. 2009 87 107
[31] Part II, J. Pseudo-Differ. Oper. Appl. 2010 341 376
, ,[32] M. W. Wong. An Introduction to Pseudo-Differential Operators. Second Edition, World Scientific, 1999.
[33] Ark. Mat. 1983 271 282
[34] M. W. Wong. Weyl Transforms. Springer-Verlag, 1998.
Cité par Sources :