Stability and Separation in Volume Comparison Problems
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 156-169.

Voir la notice de l'article provenant de la source EDP Sciences

We review recent stability and separation results in volume comparison problems and use them to prove several hyperplane inequalities for intersection and projection bodies.
DOI : 10.1051/mmnp/20138111

A. Koldobsky 1

1 Department of Mathematics, University of Missouri Columbia, MO 65211
@article{MMNP_2013_8_1_a10,
     author = {A. Koldobsky},
     title = {Stability and {Separation} in {Volume} {Comparison} {Problems}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {156--169},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     doi = {10.1051/mmnp/20138111},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138111/}
}
TY  - JOUR
AU  - A. Koldobsky
TI  - Stability and Separation in Volume Comparison Problems
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 156
EP  - 169
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138111/
DO  - 10.1051/mmnp/20138111
LA  - en
ID  - MMNP_2013_8_1_a10
ER  - 
%0 Journal Article
%A A. Koldobsky
%T Stability and Separation in Volume Comparison Problems
%J Mathematical modelling of natural phenomena
%D 2013
%P 156-169
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138111/
%R 10.1051/mmnp/20138111
%G en
%F MMNP_2013_8_1_a10
A. Koldobsky. Stability and Separation in Volume Comparison Problems. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 156-169. doi : 10.1051/mmnp/20138111. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138111/

[1] K. Ball. Some remarks on the geometry of convex sets. Geometric aspects of functional analysis (1986/87), Lecture Notes in Math. 1317, Springer-Verlag, Berlin-Heidelberg-New York, 1988, 224–231.

[2] K. Ball Trans. Amer. Math. Soc. 1991 891 901

[3] K. Ball Studia Math. 1988 69 84

[4] J. Bourgain Amer. J. Math. 1986 1467 1476

[5] J.Bourgain. Geometry of Banach spaces and harmonic analysis. Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, 871–878.

[6] J.Bourgain. On the distribution of polynomials on high–dimensional convex sets. Geometric aspects of functional analysis, Israel seminar (198990), Lecture Notes in Math. 1469 Springer, Berlin, 1991, 127–137.

[7] J. Bourgain Geom. Funct. Anal. 1991 1 13

[8] H. Busemann, C. M. Petty Math. Scand. 1956 88 94

[9] R. J. Gardner Trans. Amer. Math. Soc. 1994 435 445

[10] R. J. Gardner Annals of Math. 1994 435 447

[11] R. J. Gardner. Geometric tomography. Second edition, Cambridge University Press, Cambridge, 2006.

[12] R. J. Gardner, A. Koldobsky, Th. Schlumprecht Annals of Math. 1999 691 703

[13] I. M. Gelfand, G. E. Shilov. Generalized functions, vol. 1. Properties and operations. Academic Press, New York, 1964.

[14] I. M. Gelfand, N. Ya. Vilenkin. Generalized functions, vol. 4. Applications of harmonic analysis. Academic Press, New York, 1964.

[15] A. Giannopoulos Mathematika 1990 239 244

[16] P. Goodey, E. Lutwak, W. Weil Math. Z. 1996 363 381

[17] E. Grinberg, Gaoyong Zhang Proc. London Math. Soc. 1999 77 115

[18] B. Klartag Geom. Funct. Anal. (GAFA) 2006 1274 1290

[19] A. Koldobsky Israel J. Math. 1998 157 164

[20] A. Koldobsky Amer. J. Math. 1998 827 840

[21] A. Koldobsky Intersection bodies in R4 Adv. Math. 1998 1 14

[22] A. Koldobsky. Fourier analysis in convex geometry. Amer. Math. Soc., Providence RI, 2005.

[23] A. Koldobsky Israel J. Math. 1999 75 91

[24] A. Koldobsky Adv. Math. 2011 2145 2161

[25] A. Koldobsky Arch. Math. (Basel) 2011 91 98

[26] A. Koldobsky A hyperplane inequality for measures of convex bodies in Rn,n ≤ 4 Dicrete Comput. Geom. 2012 538 547

[27] A. Koldobsky, Dan Ma. Stability and slicing inequalities for intersection bodies. Geom. Dedicata, 2012, DOI : 10.1007/s10711-012-9729-x

[28] A. Koldobsky, G. Paouris, M. Zymonopoulou. Complex intersection bodies. arXiv :1201.0437.

[29] A. Koldobsky, M. Lifshits. Average volume of sections of star bodies. Geometric aspects of functional analysis, 119–146, Lecture Notes in Math., 1745, Springer, Berlin, 2000.

[30] A. Koldobsky, D. Ryabogin, A. Zvavitch Israel J. Math. 2004 361 380

[31] A. Koldobsky, V. Yaskin, M. Yaskina Israel J. Math. 2006 191 207

[32] A. Koldobsky, V. Yaskin. The interface between convex geometry and harmonic analysis. CBMS Regional Conference Series in Mathematics, 108, American Mathematical Society, Providence, RI, 2008.

[33] D. G. Larman, C. A. Rogers Mathematika 1975 164 175

[34] E. Lutwak Adv. Math. 1988 232 261

[35] V. Milman, A. Pajor. Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. in : Geometric Aspects of Functional Analysis, ed. by J. Lindenstrauss and V. Milman, Lecture Notes in Mathematics 1376, Springer, Heidelberg, 1989, pp. 64–104.

[36] M. Papadimitrakis On the Busemann-Petty problem about convex, centrally symmetric bodies in Rn Mathematika 1992 258 266

[37] C. M. Petty. Projection bodies. Proc. Coll. Convexity (Copenhagen 1965), Kobenhavns Univ. Mat. Inst., 234-241.

[38] R. Schneider Math. Z. 1967 71 82

[39] R. Schneider. Convex bodies : the Brunn-Minkowski theory. Cambridge University Press, Cambridge, 1993.

[40] G. C. Shephard Israel J. Math. 1964 229 306

[41] V. Yaskin Israel J. Math. 2008 221 238

[42] Gaoyong Zhang Trans. Amer. Math. Soc. 1994 777 801

[43] Gaoyong Zhang Intersection bodies and Busemann-Petty inequalities in R4 Annals of Math. 1994 331 346

[44] Gaoyong Zhang Annals of Math. 1999 535 543

[45] Gaoyong Zhang Amer. J. Math. 1996 319 340

[46] A. Zvavitch Math. Ann. 2005 867 887

Cité par Sources :