Semiclassical Limits of Heat Kernels of Laplacians on the h-Heisenberg Group
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 132-142.

Voir la notice de l'article provenant de la source EDP Sciences

We construct the heat kernels of the sub-Laplacian and the Laplacian on the h-Heisenberg group and compute the limits as h → 0 of the heat kernels.
DOI : 10.1051/mmnp/20138109

T. Kagawa 1 ; M. W. Wong 2

1 Department of Mathematics, Tokyo University of Science, 2641 Yamazaki Noda, Chiba (278-8510), Japan
2 Department of Mathematics and Statistics, York University, 4700 Keele Street Toronto, Ontario M3J 1P3, Canada
@article{MMNP_2013_8_1_a8,
     author = {T. Kagawa and M. W. Wong},
     title = {Semiclassical {Limits} of {Heat} {Kernels} of {Laplacians} on the {h-Heisenberg} {Group}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {132--142},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     doi = {10.1051/mmnp/20138109},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138109/}
}
TY  - JOUR
AU  - T. Kagawa
AU  - M. W. Wong
TI  - Semiclassical Limits of Heat Kernels of Laplacians on the h-Heisenberg Group
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 132
EP  - 142
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138109/
DO  - 10.1051/mmnp/20138109
LA  - en
ID  - MMNP_2013_8_1_a8
ER  - 
%0 Journal Article
%A T. Kagawa
%A M. W. Wong
%T Semiclassical Limits of Heat Kernels of Laplacians on the h-Heisenberg Group
%J Mathematical modelling of natural phenomena
%D 2013
%P 132-142
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138109/
%R 10.1051/mmnp/20138109
%G en
%F MMNP_2013_8_1_a8
T. Kagawa; M. W. Wong. Semiclassical Limits of Heat Kernels of Laplacians on the h-Heisenberg Group. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 132-142. doi : 10.1051/mmnp/20138109. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138109/

[1] A. Dasgupta, M. W. Wong.Weyl transforms and the heat equation for the sub-Laplacian on the Heisenberg group, in New Developments in Pseudo-Differential Operators. Operator Theory : Advances and Applications, 189, Birkhäuser, 2009, 33–42.

[2] A. Dasgupta, M. W. Wong CUBO A Mathematical Journal 2010 83 97

[3] B. Gaveau Acta Math. 1977 95 153

[4] A. Hulanicki Studia Math. 1976 165 173

[5] S. Thangavelu. Harmonic Analysis on the Heisenberg Group. Birkhäuser, 1998.

[6] M. W. Wong. Weyl Transforms. Springer-Verlag, 1998.

[7] M. W. Wong Ann. Global Anal. Geom. 2005 271 283

[8] M. W. Wong. Weyl transforms and convolution operators on the Heisenberg group in Pseudo-Differential Operators and Related Topics. Operator Theory : Advances and Applications 164 Birkhäuser, 2005, 115–120.

Cité par Sources :