Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2013_8_1_a8, author = {T. Kagawa and M. W. Wong}, title = {Semiclassical {Limits} of {Heat} {Kernels} of {Laplacians} on the {h-Heisenberg} {Group}}, journal = {Mathematical modelling of natural phenomena}, pages = {132--142}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2013}, doi = {10.1051/mmnp/20138109}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138109/} }
TY - JOUR AU - T. Kagawa AU - M. W. Wong TI - Semiclassical Limits of Heat Kernels of Laplacians on the h-Heisenberg Group JO - Mathematical modelling of natural phenomena PY - 2013 SP - 132 EP - 142 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138109/ DO - 10.1051/mmnp/20138109 LA - en ID - MMNP_2013_8_1_a8 ER -
%0 Journal Article %A T. Kagawa %A M. W. Wong %T Semiclassical Limits of Heat Kernels of Laplacians on the h-Heisenberg Group %J Mathematical modelling of natural phenomena %D 2013 %P 132-142 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138109/ %R 10.1051/mmnp/20138109 %G en %F MMNP_2013_8_1_a8
T. Kagawa; M. W. Wong. Semiclassical Limits of Heat Kernels of Laplacians on the h-Heisenberg Group. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 132-142. doi : 10.1051/mmnp/20138109. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138109/
[1] A. Dasgupta, M. W. Wong.Weyl transforms and the heat equation for the sub-Laplacian on the Heisenberg group, in New Developments in Pseudo-Differential Operators. Operator Theory : Advances and Applications, 189, Birkhäuser, 2009, 33–42.
[2] CUBO A Mathematical Journal 2010 83 97
,[3] Acta Math. 1977 95 153
[4] Studia Math. 1976 165 173
[5] S. Thangavelu. Harmonic Analysis on the Heisenberg Group. Birkhäuser, 1998.
[6] M. W. Wong. Weyl Transforms. Springer-Verlag, 1998.
[7] Ann. Global Anal. Geom. 2005 271 283
[8] M. W. Wong. Weyl transforms and convolution operators on the Heisenberg group in Pseudo-Differential Operators and Related Topics. Operator Theory : Advances and Applications 164 Birkhäuser, 2005, 115–120.
Cité par Sources :