A Remark on the Hull of a Multi-Dimensional Limit-Periodic Potential
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 75-81.

Voir la notice de l'article provenant de la source EDP Sciences

We discuss the hull of a multi-dimensional limit-periodic potential and show that such a hull is an inverse limit of product cyclic groups. We present the result in an explicit way, which will be useful for a future study of multi-dimensional limit-periodic Schrödinger operators.
DOI : 10.1051/mmnp/20138105

Z. Gan 1

1 Department of Mathematics, Rice University, Houston, TX 77005, USA
@article{MMNP_2013_8_1_a4,
     author = {Z. Gan},
     title = {A {Remark} on the {Hull} of a {Multi-Dimensional} {Limit-Periodic} {Potential}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {75--81},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     doi = {10.1051/mmnp/20138105},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138105/}
}
TY  - JOUR
AU  - Z. Gan
TI  - A Remark on the Hull of a Multi-Dimensional Limit-Periodic Potential
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 75
EP  - 81
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138105/
DO  - 10.1051/mmnp/20138105
LA  - en
ID  - MMNP_2013_8_1_a4
ER  - 
%0 Journal Article
%A Z. Gan
%T A Remark on the Hull of a Multi-Dimensional Limit-Periodic Potential
%J Mathematical modelling of natural phenomena
%D 2013
%P 75-81
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138105/
%R 10.1051/mmnp/20138105
%G en
%F MMNP_2013_8_1_a4
Z. Gan. A Remark on the Hull of a Multi-Dimensional Limit-Periodic Potential. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 75-81. doi : 10.1051/mmnp/20138105. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138105/

[1] A. Avila Commun. Math. Phys. 2009 907 918

[2] J. Avron, B. Simon Commun. Math. Phys. 1981 101 120

[3] D. Damanik, Z. Gan Commun. Pure Appl. Anal. 2011 859 871

[4] D. Damanik, Z. Gan J. Funct. Anal. 2010 4010 4025

[5] D. Damanik, Z. Gan J. d’Analyse Math 2011 33 49

[6] D. Damanik, Z. Gan, Limit-Periodic Schrödinger Operators on Zd : Uniform Localization, preprint

[7] R. Del Rio, S. Jitomirskaya, Y. Last, B. Simon Phys. Rev. Lett. 1995 117 119

[8] R. Del Rio, S. Jitomirskaya, Y. Last, B. Simon J. Anal. Math. 1997 312 322

[9] Z. Gan Math. Model. Nat. Phenom. 2010 158 174

[10] J. Wilson. Profinite Groups, Oxford University Press, New York, USA, 1998

Cité par Sources :