Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2013_8_1_a4, author = {Z. Gan}, title = {A {Remark} on the {Hull} of a {Multi-Dimensional} {Limit-Periodic} {Potential}}, journal = {Mathematical modelling of natural phenomena}, pages = {75--81}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2013}, doi = {10.1051/mmnp/20138105}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138105/} }
TY - JOUR AU - Z. Gan TI - A Remark on the Hull of a Multi-Dimensional Limit-Periodic Potential JO - Mathematical modelling of natural phenomena PY - 2013 SP - 75 EP - 81 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138105/ DO - 10.1051/mmnp/20138105 LA - en ID - MMNP_2013_8_1_a4 ER -
Z. Gan. A Remark on the Hull of a Multi-Dimensional Limit-Periodic Potential. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 75-81. doi : 10.1051/mmnp/20138105. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138105/
[1] Commun. Math. Phys. 2009 907 918
[2] Commun. Math. Phys. 1981 101 120
,[3] Commun. Pure Appl. Anal. 2011 859 871
,[4] J. Funct. Anal. 2010 4010 4025
,[5] J. d’Analyse Math 2011 33 49
,[6] D. Damanik, Z. Gan, Limit-Periodic Schrödinger Operators on Zd : Uniform Localization, preprint
[7] Phys. Rev. Lett. 1995 117 119
, , ,[8] J. Anal. Math. 1997 312 322
, , ,[9] Math. Model. Nat. Phenom. 2010 158 174
[10] J. Wilson. Profinite Groups, Oxford University Press, New York, USA, 1998
Cité par Sources :