A Remark on the Hull of a Multi-Dimensional Limit-Periodic Potential
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 75-81
Cet article a éte moissonné depuis la source EDP Sciences
We discuss the hull of a multi-dimensional limit-periodic potential and show that such a hull is an inverse limit of product cyclic groups. We present the result in an explicit way, which will be useful for a future study of multi-dimensional limit-periodic Schrödinger operators.
@article{10_1051_mmnp_20138105,
author = {Z. Gan},
title = {A {Remark} on the {Hull} of a {Multi-Dimensional} {Limit-Periodic} {Potential}},
journal = {Mathematical modelling of natural phenomena},
pages = {75--81},
year = {2013},
volume = {8},
number = {1},
doi = {10.1051/mmnp/20138105},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138105/}
}
TY - JOUR AU - Z. Gan TI - A Remark on the Hull of a Multi-Dimensional Limit-Periodic Potential JO - Mathematical modelling of natural phenomena PY - 2013 SP - 75 EP - 81 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138105/ DO - 10.1051/mmnp/20138105 LA - en ID - 10_1051_mmnp_20138105 ER -
Z. Gan. A Remark on the Hull of a Multi-Dimensional Limit-Periodic Potential. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 75-81. doi: 10.1051/mmnp/20138105
[1] Commun. Math. Phys. 2009 907 918
[2] , Commun. Math. Phys. 1981 101 120
[3] , Commun. Pure Appl. Anal. 2011 859 871
[4] , J. Funct. Anal. 2010 4010 4025
[5] , J. d’Analyse Math 2011 33 49
[6] D. Damanik, Z. Gan, Limit-Periodic Schrödinger Operators on Zd : Uniform Localization, preprint
[7] , , , Phys. Rev. Lett. 1995 117 119
[8] , , , J. Anal. Math. 1997 312 322
[9] Math. Model. Nat. Phenom. 2010 158 174
[10] J. Wilson. Profinite Groups, Oxford University Press, New York, USA, 1998
Cité par Sources :