Inequalities for Extreme Zeros of Some Classical Orthogonal and q-orthogonal Polynomials
Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 48-59.

Voir la notice de l'article provenant de la source EDP Sciences

Let {pn}∞n=0 be a sequence of orthogonal polynomials. We briefly review properties of pn that have been used to derive upper and lower bounds for the largest and smallest zero of pn. Bounds for the extreme zeros of Laguerre, Jacobi and Gegenbauer polynomials that have been obtained using different approaches are numerically compared and new bounds for extreme zeros of q-Laguerre and little q-Jacobi polynomials are proved.
DOI : 10.1051/mmnp/20138103

K. Driver 1 ; K. Jordaan 2

1 Department of Mathematics and Applied Mathematics, University of Cape Town 7701, RSA
2 Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, 0002, RSA
@article{MMNP_2013_8_1_a2,
     author = {K. Driver and K. Jordaan},
     title = {Inequalities for {Extreme} {Zeros} of {Some} {Classical} {Orthogonal} and q-orthogonal {Polynomials}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {48--59},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     doi = {10.1051/mmnp/20138103},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138103/}
}
TY  - JOUR
AU  - K. Driver
AU  - K. Jordaan
TI  - Inequalities for Extreme Zeros of Some Classical Orthogonal and q-orthogonal Polynomials
JO  - Mathematical modelling of natural phenomena
PY  - 2013
SP  - 48
EP  - 59
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138103/
DO  - 10.1051/mmnp/20138103
LA  - en
ID  - MMNP_2013_8_1_a2
ER  - 
%0 Journal Article
%A K. Driver
%A K. Jordaan
%T Inequalities for Extreme Zeros of Some Classical Orthogonal and q-orthogonal Polynomials
%J Mathematical modelling of natural phenomena
%D 2013
%P 48-59
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138103/
%R 10.1051/mmnp/20138103
%G en
%F MMNP_2013_8_1_a2
K. Driver; K. Jordaan. Inequalities for Extreme Zeros of Some Classical Orthogonal and q-orthogonal Polynomials. Mathematical modelling of natural phenomena, Tome 8 (2013) no. 1, pp. 48-59. doi : 10.1051/mmnp/20138103. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20138103/

[1] S. Ahmed, A. Laforgia, M. E. Muldoon J. London Math. Soc., second series 1982 246 252

[2] I. Area, D.K. Dimitrov, E. Godoy, A. Ronveaux Math. Comp. 2004 1937 1951

[3] I. Area, D.K. Dimitrov, E. Godoy, F.R. Rafaeli Math. Comp. 2012 991 1004

[4] A.F. Beardon Lect. Notes Math. 2011 247 262

[5] O. Bottema Proc. Amsterdam 1931 681

[6] C. De Boor, Eb Saff Linear Algebra Appl. 1986 43 55

[7] A. Deaño, A. Gil, J. Segura J. Approx. Theory 2004 208 243

[8] A. Deaño, J. Segura J. Approx. Theory 2007 92 110

[9] D.K. Dimitrov, F.R. Rafaeli J. Comput. Appl. Math.. 2009 699 702

[10] D.K. Dimitrov, G.P. Nikolov J. Approx. Theory 2010 1793 1804

[11] D.K. Dimitrov, R.O. Rodrigues J. Approx. Theory. 2002 224 239

[12] K. Driver, K. Jordaan J. Approx. Theory. 2012 1200 1204

[13] Á. Elbert, A. Laforgia J. Approx. Theory. 1990 88 97

[14] Á. Elbert, A. Laforgia, L.G. Rodonó Acta Math. Hungar. 1994 351 359

[15] Á. Elbert, P.D. Siafarikas J. Approx. Theory. 1999 31 39

[16] W. Erb, F. Tookós Appl. Math. Comput. 2011 4771 4780

[17] W.H. Foster, I. Krasikov Adv. Appl. Math. 2002 102 114

[18] P.C. Gibson J. Approx. Theory 2000 129 132

[19] J. Gishe, F. Tookós. On the Sturm comparison and convexity theorem for difference and q-difference equations. Acta Scientiarum Mathematicarum. In press.

[20] D.E. Gupta, M.E. Muldoon. Inequalities for the smallest zeros of Laguerre polynomials and their q-analogues. Journal of Inequalities in Pure and Applied Mathematics, 8 (2007), Issue 1, Article 24, 7 pp.

[21] W. Hahn Jahresbericht der Deutschen Mathematiker-Vereinigung 1933 215 236

[22] E. Hille Jahresbericht der Deutschen Mathematiker-Vereinigung 1933 162 165

[23] E.K. Ifantis, P.D. Siafarikas. Differential inequalities on the greatest zero of Laguerre and ultraspherical polynomials in Actas del VI Simposium on Polinomios Orthogonales Y Aplicaciones, Gijon (1999) 187-197.

[24] M.E.H. Ismail. Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications, Cambridge : Cambridge University Press, 98 (2005).

[25] M.E.H. Ismail Advances in Appl. Math. 1987 111 118

[26] M.E.H. Ismail. Monotonicity of zeros of orthogonal polynomials. Invited address in ”q-Series and Partitions”, edited by D. Stanton, IMA Volumes in Mathematics and its Applications, Vol. 18, Springer-Verlag, New York, 1989, 177–190.

[27] M.E.H. Ismail Pacific J. Math. 2000 355 369

[28] M.E.H. Ismail J. Nonlinear Functional Analysis and Optimization 43 55

[29] M.E.H. Ismail, R Zhang Adv. Appl. Math. 1988 439 446

[30] M.E.H. Ismail, M.E. Muldoon Transactions Amer. Math. Soc. 1991 65 78

[31] M.E.H. Ismail, X. Li Proc. Amer. Math. Soc. 1992 131 140

[32] K. Jordaan, F. Tookós J. Comp. Anal. Appl. 2009 762 767

[33] R. Koekoek, P.A. Lesky, R.F. Swarttouw. Hypergeometric orthogonal polynomials and their q-analogue. Springer Monographs in Mathematics, Springer Verlag, Berlin (2010).

[34] I. Krasikov J. Approx. Theory. 2003 287 291

[35] I. Krasikov East J. Approx. 2003 41 65

[36] A. Markov Math. Ann. 1886 177 182

[37] D.S. Moak J. Math. Anal. Appl. 1981 20 47

[38] M.E. Muldoon J. Comput. Appl. Math. 1993 167 186

[39] M.E. Muldoon. Convexity properties of special functions and their zeros. Milovanovic, G. V. (ed.), Recent progress in inequalities. Dedicated to Prof. Dragoslav S. Mitrinovic. Dordrecht : Kluwer Academic Publishers. Math. Appl., Dordr. 430 1998, 309–323 Publishers, Inc., Boston, 1991.

[40] E.R. Neumann Jahresber. d. S.M.V. 1921 15

[41] G.P. Nikolov, R. Uluchev. Inequalities for real-root polynomials. Proof of a conjecture of Foster and Krasikov. in : D.K. Dimitrov, G.P. Nikolov, R. Uluchev (eds.), Approximation Theory : A volume dedicated to B. Bojanov. Marin Drinov Academic Publishing House, Sofia, 2004, pp. 201–216.

[42] P.D. Siafarikas Math. Inequal. Applic. 1999 233 241

[43] C.L. Siegel Abh. Preuss. Akad. Wiss. 1929 1 70

[44] T.J. Stieltjes Acta Math. 1886 385 400

[45] C. Sturm J. Math. Pures Appl. 1836 106 186

[46] G. Szegő. Orthogonal Polynomials. American Mathematical Society Colloquium Publications, Volume XXIII, Providence, RI, fourth edition, 1975.

[47] E. Van Doorn J. Approx. Theory. 1987 254 266

[48] L. Vinet, A. Zhedanov J. Comput. Appl. Math. 2004 41 48

[49] H.S. Wall, M. Wetzel Duke Math. J. 1944 983 1000

[50] G.N. Watson. A Treatise on the Theory of Bessel Functions 2nd ed., (Cambridge University Press, Cambridge 1966).

Cité par Sources :