Mathematical Models of Dividing Cell Populations: Application to CFSE Data
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 5, pp. 24-52.

Voir la notice de l'article provenant de la source EDP Sciences

Flow cytometric analysis using intracellular dyes such as CFSE is a powerful experimental tool which can be used in conjunction with mathematical modeling to quantify the dynamic behavior of a population of lymphocytes. In this survey we begin by providing an overview of the mathematically relevant aspects of the data collection procedure. We then present an overview of the large body of mathematical models, along with their assumptions and uses, which have been proposed to describe the dynamics of proliferating cell populations. While much of this body of work has been aimed at modeling the generation structure (cells per generation) of the proliferating population, several recent models have considered the more fundamental task of modeling CFSE histogram data directly. Such models are analyzed and recent results are discussed. Finally, directions for future research are suggested.
DOI : 10.1051/mmnp/20127504

H.T. Banks 1 ; W. Clayton Thompson 1, 2

1 Center for Research in Scientific Computation Center for Quantitative Sciences in Biomedicine, N.C. State University Raleigh, NC
2 ICREA Infection Biology Lab Department of Experimental and Health Sciences Universitat Pompeu Fabra, Barcelona
@article{MMNP_2012_7_5_a3,
     author = {H.T. Banks and W. Clayton Thompson},
     title = {Mathematical {Models} of {Dividing} {Cell} {Populations:} {Application} to {CFSE} {Data}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {24--52},
     publisher = {mathdoc},
     volume = {7},
     number = {5},
     year = {2012},
     doi = {10.1051/mmnp/20127504},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127504/}
}
TY  - JOUR
AU  - H.T. Banks
AU  - W. Clayton Thompson
TI  - Mathematical Models of Dividing Cell Populations: Application to CFSE Data
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 24
EP  - 52
VL  - 7
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127504/
DO  - 10.1051/mmnp/20127504
LA  - en
ID  - MMNP_2012_7_5_a3
ER  - 
%0 Journal Article
%A H.T. Banks
%A W. Clayton Thompson
%T Mathematical Models of Dividing Cell Populations: Application to CFSE Data
%J Mathematical modelling of natural phenomena
%D 2012
%P 24-52
%V 7
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127504/
%R 10.1051/mmnp/20127504
%G en
%F MMNP_2012_7_5_a3
H.T. Banks; W. Clayton Thompson. Mathematical Models of Dividing Cell Populations: Application to CFSE Data. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 5, pp. 24-52. doi : 10.1051/mmnp/20127504. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127504/

[1] O. Arino, E. Sanchez, G.F. Webb Mathematical Analysis and Applications 1997 499 513

[2] B. Asquith, C. Debacq, A. Florins, N. Gillet, T. Sanchez-Alcaraz, A. Mosley, L. Willems Proc. R. Soc. B 2006 1165 1171

[3] H.T. Banks. A Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering. CRC Press/Taylor-Francis, Boca Raton London New York, 2012.

[4] H.T. Banks, V. A. Bokil, S. Hu, F.C.T. Allnutt, R. Bullis, A.K. Dhar, C.L. Browdy Shrimp biomass and viral infection for production of biological countermeasures, CRSC-TR05-45. North Carolina State University, December 2005  Mathematical Biosciences and Engineering 2006 635 660

[5] H.T. Banks, D.M. Bortz, S.E. Holte Math. Biosciences. 2003 63 91

[6]

[7]

[8] H.T. Banks, F. Charles, M. Doumic, K. L. Sutton, W. C. Thompson Label structured cell proliferation models. CRSC-TR10-10, North Carolina State University, June 2010  Appl. Math. Letters 2010 1412 1415

[9] H.T. Banks, J.L. Davis, S.L. Ernstberger, S. Hu, E. Artimovich, A.K. Dhar, C.L. Browdy A comparison of probabilistic and stochastic differential equations in modeling growth uncertainty and variability. CRSC-TR08-03, North Carolina State University, February 2008 2009 130 148

[10]

[11] H.T. Banks, B.F. Fitzpatrick Estimation of growth rate distributions in size-structured population models. CAMS Tech. Rep. 90-2, Univ. of Southern California, January 1990  Quart. Appl. Math. 1991 215 235

[12]

[13] H.T. Banks, N.L. Gibson Well-posedness in Maxwell systems with distributions of polarization relaxation parameters. CRSC-TR04-01, North Carolina State University, January 2004  Applied Math. Letters 2005 423 430

[14] H.T. Banks, N.L. Gibson CRSC-TR05-29, North Carolina State University, August2005  2006 749 795

[15] H.T. Banks, K. Holm, F. Kappel CRSC-TR10-11, North Carolina State University, May 2011  2011 075002

[16] H.T. Banks, S. Hu CRSC-TR11-02, North Carolina State University, January 2011  2012 1 25

[17]

[18] H.T. Banks, K. Kunisch. Estimation Techniques for Distributed Parameter Systems, Birkhauser, Boston, 1989.

[19] H.T. Banks, G.A. Pinter CRSC-TR04-03, North Carolina State University, January 2004  2005 395 412

[20] H.T. Banks, L.K. Potter CRSC-TR02-27, North Carolina State University, September 2002  2004 193 225

[21]

[22] H.T. Banks, Karyn L. Sutton, W. Clayton Thompson, G. Bocharov, D. Roose, T. Schenkel, A. Meyerhans CRSC-TR09-17, North Carolina State University, August 2009  2011 116 150

[23]

[24] H.T. Banks, W. Clayton Thompson CRSC-TR12-12, North Carolina State University, May 2012  2012 119 147

[25] H.T. Banks, H.T. Tran, D.E. Woodward 1993 1574 1602

[26] B. Basse, B. Baguley, E. Marshall, G. Wake, D. Wall Bull. Math. Biol. 2005 815 830

[27] F. Bekkal Brikci, J. Clairambault, B. Ribba, B. Perthame Math. Biol. 2008 91 110

[28] G. Bell, E. Anderson Biophysical Journal 1967 329 351

[29] S. Bernard, L. Pujo-Menjouet, M.C. Mackey 2003 3414 3424

[30] S. Bonhoeffer, H. Mohri, D. Ho, A.S. Perelson Immunology 2000 5049 5054

[31] Jose A. M. Borghans, R.J. De Boer Immunological Reviews 2007 35 47

[32] K.P. Burnham, D.R. Anderson. Model Selection and Multimodel Inference : A Practical Information-Theoretic Approach (2nd Edition), Springer, New York, 2002.

[33] R. Callard, P.D. Hodgkin Immunological Reviews 2007 119 129

[34] “Cyton Calculator”, Walter and Eliza Ball Institute of Medical Research. Available Online. Accessed 16 March 2012. http://www.wehi.edu.au/faculty_members/research_projects/cyton_calculator

[35] R.J. Deboer, V.V. Ganusov, D. Milutinovic, P.D. Hodgkin, A.S. Perelson 2006 1011 1031

[36] R.J. Deboer, A. S. Perelson Comp. and Appl. Mathematics 2005 140 164

[37] E.K. Deenick, A.V. Gett, P.D. Hodgkin Immunology 2003 4963 4972

[38] K. Duffy, V. Subramanian Math. Biol. 2009 255 285

[39] J.Z. Farkas Appl. Math. and Comp. 2004 771 777

[40] J.Z. Farkas Nonlinear Analysis : Real World Applications 2005 962 969

[41] V. V. Ganusov, D. Milutinovi, R. J. De Boer Immunology 2007 950 957

[42] V.V. Ganusov, S.S. Pilyugin, R.J. De Boer, K. Murali-Krishna, R. Ahmed, R. Antia. Quantifying cell turnover using CFSE data. Immunological Methods, 298 (2005), 183–200.

[43] A.V. Gett, P.D. Hodgkin Nature Immunology 2000 239 244

[44] M. Gyllenberg, G.F. Webb Mathematical Biosciences 1987 67 95

[45] M. Gyllenberg, G.F. Webb J. Math. Biol. 1990 671 694

[46] J. Hasenauer, D. Schittler, F. Allgöwer. A computational model for proliferation dynamics of division- and label-structured populations. arXive.org, arXiv :1202.4923v1,22Feb,2012.

[47] E.D. Hawkins, Mirja Hommel, M.L. Turner, F. Battye, J. Markham, P.D. Hodgkin Nature Protocols 2007 2057 2067

[48] E.D. Hawkins, M.L. Turner, M.R. Dowling, C. Van Gend, P.D. Hodgkin Proc. Natl. Acad. Sci. 2007 5032 5037

[49] E.D. Hawkins, J.F. Markham, L.P. Mcguinness, P.D. Hodgkin 2009 13457 13462

[50] O. Hyrien, M.S. Zand American Statistical Association 2008 222 239

[51] O. Hyrien, R. Chen, M.S. Zand. An age-dependent branching process model for the analysis of CFSE-labeling experiments. Biology Direct, 5 (2010), Published Online.

[52] H.Y. Lee, E.D. Hawkins, M.S. Zand, T. Mosmann, H. Wu, P.D. Hodgkin, A.S. Perelson Bull. Math. Biol. 2009 1649 1670

[53] H.Y. Lee, A.S. Perelson Bull. Math. Biol. 2008 21 44

[54] K. Leon, J. Faro, J. Carneiro Theoretical Biology 2004 455 476

[55] T. Luzyanina, D. Roose, G. Bocharov Math. Biol. 2009 581 603

[56] T. Luzyanina, D. Roose, T. Schenkel, M. Sester, S. Ehl, A. Meyerhans, G. Bocharov. Numerical modelling of label-structured cell population growth using CFSE distribution data. Theoretical Biology and Medical Modelling, 4 (2007), Published Online.

[57] A.B. Lyons 1999 509 515

[58] A.B. Lyons, J. Hasbold, P.D. Hodgkin Methods in Cell Biology 2001 375 398

[59] A.B. Lyons, K.V. Doherty Current Protocols in Cytometry 2004 9.11.1 9.11.10

[60] A.B. Lyons, C.R. Parish Immunol. Methods 1994 131 137

[61] G. Matera, M. Lupi, P. Ubezio Cytometry A 2004 118 128

[62] J.A. Metz, O. Diekmann. The Dynamics of Physiologically Structured Populations. Springer Lecture Notes in Biomathematics 68, Heidelberg, 1986.

[63] H. Miao, X. Jin, A. Perelson, H. Wu Bull. Math. Biol. 2012 300 326

[64] K. Murphy, aneway’s Immunobiology, 8th[entity !#x20 !]Edition. Garland Science, London New York, 2012.

[65] R.E. Nordon, Kap-Hyoun Ko, R. Odell, T. Schroeder 2011 7 18

[66] R.E. Nordon, M. Nakamura, C. Ramirez, R. Odell Immunology and Cell Biology 1999 523 529

[67] C. Parish Immunology and Cell Biol. 1999 499 508

[68] B. Perthame. Transport Equations in Biology. Birkhauser Frontiers in Mathematics, Basel, 2007.

[69] S. S. Pilyugin, V. V. Ganusov, K. Murali-Krishnac, R. Ahmed, R. Antia Theoretical Biology 2003 275 283

[70] B.J.C. Quah, C.R. Parish. New and improved methods for measuring lymphocyte proliferation in vitro and in vivo using CFSE-like fluorescent dyes. Immunological Methods, (2012), to appear.

[71] B. Quah, H. Warren, C. Parish Nature Protocols 2007 2049 2056

[72] P. Revy, M. Sospedra, B. Barbour, A. Trautmann Nature Immunology 2001 925 931

[73] M. Roederer 2011 95 101

[74] D. Schittler, J. Hasenauer, F. Allgöwer. A generalized model for cell proliferation : Integrating division numbers and label dynamics. Proc. Eighth International Workshop on Computational Systems Biology (WCSB 2011), June 2001, Zurich, Switzerland, p. 165–168.

[75] J. Sinko, W. Streifer Ecology 1967 910 918

[76] J.A. Smith, L. Martin Proc. Natl. Acad. Sci. 1973 1263 1267

[77] V.G. Subramanian, K.R. Duffy, M.L. Turner, P.D. Hodgkin Math. Biol. 2008 861 892

[78] H. Veiga-Fernandez, U. Walter, C. Bourgeois, A. Mclean, B. Rocha 2000 47 53

[79] W. C. Thompson. Partial Differential Equation Modeling of Flow Cytometry Data from CFSE-based Proliferation Assays. Ph.D. Dissertation, Dept. of Mathematics, North Carolina State University, Raleigh, December, 2011.

[80] P.K. Wallace, J.D. Tario, J.L. Fisher, S.S. Wallace, M.S. Ernstoff, K.A. Muirhead Cytometry A 2008 1019 1034

[81] H. S. Warren Immunology and Cell Biology 1999 544 551

[82] C. Wellard, J. Markham, E.D. Hawkins, P.D. Hodgkin Theoretical Biology 2010 443 449

[83] J.M. Witkowski Current Protocols in Cytometry 2008 9.25.1 9.25.8

[84] A. Yates, C. Chan, J. Strid, S. Moon, R. Callard, A.J.T. George, J. Stark. Reconstruction of cell population dynamics using CFSE. BMC Bioinformatics, 8 (2007), Published Online.

Cité par Sources :