Voir la notice de l'article provenant de la source EDP Sciences
H.T. Banks 1 ; W. Clayton Thompson 1, 2
@article{MMNP_2012_7_5_a3, author = {H.T. Banks and W. Clayton Thompson}, title = {Mathematical {Models} of {Dividing} {Cell} {Populations:} {Application} to {CFSE} {Data}}, journal = {Mathematical modelling of natural phenomena}, pages = {24--52}, publisher = {mathdoc}, volume = {7}, number = {5}, year = {2012}, doi = {10.1051/mmnp/20127504}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127504/} }
TY - JOUR AU - H.T. Banks AU - W. Clayton Thompson TI - Mathematical Models of Dividing Cell Populations: Application to CFSE Data JO - Mathematical modelling of natural phenomena PY - 2012 SP - 24 EP - 52 VL - 7 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127504/ DO - 10.1051/mmnp/20127504 LA - en ID - MMNP_2012_7_5_a3 ER -
%0 Journal Article %A H.T. Banks %A W. Clayton Thompson %T Mathematical Models of Dividing Cell Populations: Application to CFSE Data %J Mathematical modelling of natural phenomena %D 2012 %P 24-52 %V 7 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127504/ %R 10.1051/mmnp/20127504 %G en %F MMNP_2012_7_5_a3
H.T. Banks; W. Clayton Thompson. Mathematical Models of Dividing Cell Populations: Application to CFSE Data. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 5, pp. 24-52. doi : 10.1051/mmnp/20127504. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127504/
[1] Mathematical Analysis and Applications 1997 499 513
, ,[2] Proc. R. Soc. B 2006 1165 1171
, , , , , ,[3] H.T. Banks. A Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering. CRC Press/Taylor-Francis, Boca Raton London New York, 2012.
[4] Shrimp biomass and viral infection for production of biological countermeasures, CRSC-TR05-45. North Carolina State University, December 2005 Mathematical Biosciences and Engineering 2006 635 660
, , , , , ,[5] Math. Biosciences. 2003 63 91
, ,[6]
[7]
[8] Label structured cell proliferation models. CRSC-TR10-10, North Carolina State University, June 2010 Appl. Math. Letters 2010 1412 1415
, , , ,[9] A comparison of probabilistic and stochastic differential equations in modeling growth uncertainty and variability. CRSC-TR08-03, North Carolina State University, February 2008 2009 130 148
, , , , , ,[10]
[11] Estimation of growth rate distributions in size-structured population models. CAMS Tech. Rep. 90-2, Univ. of Southern California, January 1990 Quart. Appl. Math. 1991 215 235
,[12]
[13] Well-posedness in Maxwell systems with distributions of polarization relaxation parameters. CRSC-TR04-01, North Carolina State University, January 2004 Applied Math. Letters 2005 423 430
,[14] CRSC-TR05-29, North Carolina State University, August2005 2006 749 795
,[15] CRSC-TR10-11, North Carolina State University, May 2011 2011 075002
, ,[16] CRSC-TR11-02, North Carolina State University, January 2011 2012 1 25
,[17]
[18] H.T. Banks, K. Kunisch. Estimation Techniques for Distributed Parameter Systems, Birkhauser, Boston, 1989.
[19] CRSC-TR04-03, North Carolina State University, January 2004 2005 395 412
,[20] CRSC-TR02-27, North Carolina State University, September 2002 2004 193 225
,[21]
[22] CRSC-TR09-17, North Carolina State University, August 2009 2011 116 150
, , , , , ,[23]
[24] CRSC-TR12-12, North Carolina State University, May 2012 2012 119 147
,[25]
, , 1993 1574 1602[26] Bull. Math. Biol. 2005 815 830
, , , ,[27] Math. Biol. 2008 91 110
, , ,[28] Biophysical Journal 1967 329 351
,[29]
, , 2003 3414 3424[30] Immunology 2000 5049 5054
, , ,[31] Immunological Reviews 2007 35 47
,[32] K.P. Burnham, D.R. Anderson. Model Selection and Multimodel Inference : A Practical Information-Theoretic Approach (2nd Edition), Springer, New York, 2002.
[33] Immunological Reviews 2007 119 129
,[34] “Cyton Calculator”, Walter and Eliza Ball Institute of Medical Research. Available Online. Accessed 16 March 2012. http://www.wehi.edu.au/faculty_members/research_projects/cyton_calculator
[35]
, , , , 2006 1011 1031[36] Comp. and Appl. Mathematics 2005 140 164
,[37] Immunology 2003 4963 4972
, ,[38] Math. Biol. 2009 255 285
,[39] Appl. Math. and Comp. 2004 771 777
[40] Nonlinear Analysis : Real World Applications 2005 962 969
[41] Immunology 2007 950 957
, ,[42] V.V. Ganusov, S.S. Pilyugin, R.J. De Boer, K. Murali-Krishna, R. Ahmed, R. Antia. Quantifying cell turnover using CFSE data. Immunological Methods, 298 (2005), 183–200.
[43] Nature Immunology 2000 239 244
,[44] Mathematical Biosciences 1987 67 95
,[45] J. Math. Biol. 1990 671 694
,[46] J. Hasenauer, D. Schittler, F. Allgöwer. A computational model for proliferation dynamics of division- and label-structured populations. arXive.org, arXiv :1202.4923v1,22Feb,2012.
[47] Nature Protocols 2007 2057 2067
, , , , ,[48] Proc. Natl. Acad. Sci. 2007 5032 5037
, , , ,[49]
, , , 2009 13457 13462[50] American Statistical Association 2008 222 239
,[51] O. Hyrien, R. Chen, M.S. Zand. An age-dependent branching process model for the analysis of CFSE-labeling experiments. Biology Direct, 5 (2010), Published Online.
[52] Bull. Math. Biol. 2009 1649 1670
, , , , , ,[53] Bull. Math. Biol. 2008 21 44
,[54] Theoretical Biology 2004 455 476
, ,[55] Math. Biol. 2009 581 603
, ,[56] T. Luzyanina, D. Roose, T. Schenkel, M. Sester, S. Ehl, A. Meyerhans, G. Bocharov. Numerical modelling of label-structured cell population growth using CFSE distribution data. Theoretical Biology and Medical Modelling, 4 (2007), Published Online.
[57]
1999 509 515[58] Methods in Cell Biology 2001 375 398
, ,[59] Current Protocols in Cytometry 2004 9.11.1 9.11.10
,[60] Immunol. Methods 1994 131 137
,[61] Cytometry A 2004 118 128
, ,[62] J.A. Metz, O. Diekmann. The Dynamics of Physiologically Structured Populations. Springer Lecture Notes in Biomathematics 68, Heidelberg, 1986.
[63] Bull. Math. Biol. 2012 300 326
, , ,[64] K. Murphy, aneway’s Immunobiology, 8th[entity !#x20 !]Edition. Garland Science, London New York, 2012.
[65]
, , , 2011 7 18[66] Immunology and Cell Biology 1999 523 529
, , ,[67] Immunology and Cell Biol. 1999 499 508
[68] B. Perthame. Transport Equations in Biology. Birkhauser Frontiers in Mathematics, Basel, 2007.
[69] Theoretical Biology 2003 275 283
, , , ,[70] B.J.C. Quah, C.R. Parish. New and improved methods for measuring lymphocyte proliferation in vitro and in vivo using CFSE-like fluorescent dyes. Immunological Methods, (2012), to appear.
[71] Nature Protocols 2007 2049 2056
, ,[72] Nature Immunology 2001 925 931
, , ,[73]
2011 95 101[74] D. Schittler, J. Hasenauer, F. Allgöwer. A generalized model for cell proliferation : Integrating division numbers and label dynamics. Proc. Eighth International Workshop on Computational Systems Biology (WCSB 2011), June 2001, Zurich, Switzerland, p. 165–168.
[75] Ecology 1967 910 918
,[76] Proc. Natl. Acad. Sci. 1973 1263 1267
,[77] Math. Biol. 2008 861 892
, , ,[78]
, , , , 2000 47 53[79] W. C. Thompson. Partial Differential Equation Modeling of Flow Cytometry Data from CFSE-based Proliferation Assays. Ph.D. Dissertation, Dept. of Mathematics, North Carolina State University, Raleigh, December, 2011.
[80] Cytometry A 2008 1019 1034
, , , , ,[81] Immunology and Cell Biology 1999 544 551
[82] Theoretical Biology 2010 443 449
, , ,[83] Current Protocols in Cytometry 2008 9.25.1 9.25.8
[84] A. Yates, C. Chan, J. Strid, S. Moon, R. Callard, A.J.T. George, J. Stark. Reconstruction of cell population dynamics using CFSE. BMC Bioinformatics, 8 (2007), Published Online.
Cité par Sources :