Shear-induced Electrokinetic Lift at Large Péclet Numbers
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 4, pp. 64-81.

Voir la notice de l'article provenant de la source EDP Sciences

We analyze the problem of shear-induced electrokinetic lift on a particle freely suspended near a solid wall, subject to a homogeneous (simple) shear. To this end, we apply the large-Péclet-number generic scheme recently developed by Yariv et al. (J. Fluid Mech., Vol. 685, 2011, p. 306). For a force- and torque-free particle, the driving flow comprises three components, respectively describing (i) a particle translating parallel to the wall; (ii) a particle rotating with an angular velocity vector normal to the plane of shear; and (iiii) a stationary particle in a shear flow. Symmetry arguments reveal that the electro-viscous lift, normal to the wall, is contributed by Maxwell stresses accompanying the induced electric field, while electro-viscous drag and torque corrections, parallel to the wall, are contributed by the Newtonian stresses accompanying the induced flow. We focus upon the near-contact limit, where all electro-viscous contributions are dominated by the intense electric field in the narrow gap between the particle and the wall. This field is determined by the gap-region pressure distributions associated with the translational and rotational components of the driving Stokes flow, with the shear-component contribution directly affecting only higher-order terms. Owing to the similarity of the corresponding pressure distributions, the induced electric field for equal particle–wall zeta potentials is proportional to the sum of translation and rotation speeds. The electro-viscous loads result in induced particle velocities, normal and tangential to the wall, inversely proportional to the second power of particle–wall separation.
DOI : 10.1051/mmnp/20127406

O. Schnitzer 1 ; I. Frankel 2 ; E. Yariv 1

1 Department of Mathematics, Technion – Israel Institute of Technology Technion City, 32000, Israel
2 Department of Aerospace Engineering, Technion – Israel Institute of Technology Technion City, 32000, Israel
@article{MMNP_2012_7_4_a5,
     author = {O. Schnitzer and I. Frankel and E. Yariv},
     title = {Shear-induced {Electrokinetic} {Lift} at {Large} {P\'eclet} {Numbers}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {64--81},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2012},
     doi = {10.1051/mmnp/20127406},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127406/}
}
TY  - JOUR
AU  - O. Schnitzer
AU  - I. Frankel
AU  - E. Yariv
TI  - Shear-induced Electrokinetic Lift at Large Péclet Numbers
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 64
EP  - 81
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127406/
DO  - 10.1051/mmnp/20127406
LA  - en
ID  - MMNP_2012_7_4_a5
ER  - 
%0 Journal Article
%A O. Schnitzer
%A I. Frankel
%A E. Yariv
%T Shear-induced Electrokinetic Lift at Large Péclet Numbers
%J Mathematical modelling of natural phenomena
%D 2012
%P 64-81
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127406/
%R 10.1051/mmnp/20127406
%G en
%F MMNP_2012_7_4_a5
O. Schnitzer; I. Frankel; E. Yariv. Shear-induced Electrokinetic Lift at Large Péclet Numbers. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 4, pp. 64-81. doi : 10.1051/mmnp/20127406. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127406/

[1] D. J. Jeffrey. Some basic principles in interaction calculations. In E. M. Torry, editor, Sedimentation of small particles in a viscous fluid, chapter 4, pages 97–124. Computational Mechanics, 1996.

[2] L. G. Leal. Advanced Transport Phenomena : Fluid Mechanics and Convective Transport Processes. Cambridge University Press, New York, 2007.

[3] B. M. Alexander, D. C. Prieve Langmuir 1987 788 795

[4] S. G. Bike, Lazarro L., D. C. Prieve J. Colloid Interface Sci. 1995 411 421

[5] S. G. Bike, D. C. Prieve J. Colloid Interface Sci. 1990 95 112

[6] S. G. Bike, D. C. Prieve J. Colloid Interface Sci. 1992 87 96

[7] S. G. Bike, D. C. Prieve J. Colloid Interface Sci. 1995 422 434

[8] T. G. M. Van De Ven, Warszynski P., S. S. Dukhin Colloid Surface A 1993 33 41

[9] T. G. M. Van De Ven, Warszynski P., S. S. Dukhin J. Colloid Interface Sci. 1993 328 331

[10] R. G. Cox J. Fluid Mech. 1997 1 34

[11] S. M. Tabatabaei, Van De Ven T. G. M., A. D. Rey J. Colloid Interface Sci. 2006 291 301

[12] E. Yariv, O. Schnitzer, I. Frankel J. Fluid Mech. 2011 306 334

[13] O. Schnitzer, A. Khair, E. Yariv Phys. Rev. Lett. 2011 2783014

[14] J. B. Keller J. Appl. Phys. 1963 991 993

[15] M. E. O’Neill, K. Stewartson J. Fluid Mech. 1967 705 724

[16] M. D. A. Cooley, M. E. O’Neill J. Inst. Math. Applics. 1968 163 173

[17] A. J. Goldman, R.G. Cox, H. Brenner Chem. Engng Sci. 1967 637 651

[18] M. Van Dyke. Perturbation methods in fluid mechanics. Academic press, New York, 1964.

[19] A. J. Goldman, Cox R.G., H. Brenner Chem. Engng Sci. 1967 653 660

[20] M. E. O’Neill Chem. Engrg Sci. 1968 1293 1298

[21] M. D. A. Cooley, M. E. O’Neill Mathematika 1969 37 49

[22] O. Schnitzer, I. Frankel, E. Yariv. Streaming-potential phenomena in the thin-Debye-layer limit. Part 2. Moderate Péclet numbers. J. Fluid Mech., (2012), In press.

Cité par Sources :