Controlling Nanoparticles Formation in Molten Metallic Bilayers by Pulsed-Laser Interference Heating
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 4, pp. 20-38.

Voir la notice de l'article provenant de la source EDP Sciences

The impacts of the two-beam interference heating on the number of core-shell and embedded nanoparticles and on nanostructure coarsening are studied numerically based on the non-linear dynamical model for dewetting of the pulsed-laser irradiated, thin ( 20 nm) metallic bilayers. The model incorporates thermocapillary forces and disjoining pressures, and assumes dewetting from the optically transparent substrate atop of the reflective support layer, which results in the complicated dependence of light reflectivity and absorption on the thicknesses of the layers. Stabilizing thermocapillary effect is due to the local thickness-dependent, steady-state temperature profile in the liquid, which is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Linear stability analysis of the model equations set for Ag/Co bilayer predicts the dewetting length scales in the qualitative agreement with experiment.
DOI : 10.1051/mmnp/20127403

M. Khenner 1 ; S. Yadavali 2 ; R. Kalyanaraman 3

1 Department of Mathematics, Applied Physics Institute, Western Kentucky University, Bowling Green, KY 42101
2 Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN 37996
3 Department of Chemical and Biomolecular Engineering, Department of Materials Science and Engineering, Sustainable Energy Education Research Center, The University of Tennessee, Knoxville, TN 37996
@article{MMNP_2012_7_4_a2,
     author = {M. Khenner and S. Yadavali and R. Kalyanaraman},
     title = {Controlling {Nanoparticles} {Formation} in {Molten} {Metallic} {Bilayers} by {Pulsed-Laser} {Interference} {Heating}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {20--38},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2012},
     doi = {10.1051/mmnp/20127403},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127403/}
}
TY  - JOUR
AU  - M. Khenner
AU  - S. Yadavali
AU  - R. Kalyanaraman
TI  - Controlling Nanoparticles Formation in Molten Metallic Bilayers by Pulsed-Laser Interference Heating
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 20
EP  - 38
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127403/
DO  - 10.1051/mmnp/20127403
LA  - en
ID  - MMNP_2012_7_4_a2
ER  - 
%0 Journal Article
%A M. Khenner
%A S. Yadavali
%A R. Kalyanaraman
%T Controlling Nanoparticles Formation in Molten Metallic Bilayers by Pulsed-Laser Interference Heating
%J Mathematical modelling of natural phenomena
%D 2012
%P 20-38
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127403/
%R 10.1051/mmnp/20127403
%G en
%F MMNP_2012_7_4_a2
M. Khenner; S. Yadavali; R. Kalyanaraman. Controlling Nanoparticles Formation in Molten Metallic Bilayers by Pulsed-Laser Interference Heating. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 4, pp. 20-38. doi : 10.1051/mmnp/20127403. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127403/

[1] A. Vrij, J. Th. G. Overbeek J. Am. Chem. Soc. 1968 3074 3078

[2] G. Reiter Phys. Rev. Lett. 1992 75 78

[3] A. Sharma, R. Khanna Phys. Rev. Lett. 1998 3463 3466

[4] R.M. Bradley, J.M.E. Harper J. Vac. Sci. Tech. A 1988 2390 2395

[5] E. Chason, T.M. Mayer, B.K. Kellerman, D.T. Mcllroy, A.J. Howard Phys. Rev. Lett. 1994 3040 3043

[6] J. Bischof, D. Scherer, S. Herminghaus, P. Leiderer Phys. Rev. Lett. 1996 1536 1539

[7] S.J. Henley, J.D. Carey, S.R.P. Silva Phys. Rev. B 2005 195408 18

[8] J. Trice, D. Thomas, C. Favazza, R. R. Sureshkumar, R. Kalyanaraman Phys. Rev. B 2007 235439 54

[9] C. Zhang, R. Kalyanaraman Appl. Phys. Lett. 2003 4827 4829

[10] C. Favazza, J. Trice, A.K. Gangopadhyay, H. Garcia, R. Sureshkumar, R. Kalyanaraman J. Electron. Mater. 2006 1618 1620

[11] C. Favazza, R. Kalyanaraman, R. Sureshkumar Nanotechnology 2006 4229 4234

[12] J. Trice, C. Favazza, D. Thomas, H. Garcia, R. Kalyanaraman, R. R. Sureshkumar Phys. Rev. Lett. 2008 017802 6

[13] H. Krishna, R. Sachan, J. Strader, C. Favazza, M. Khenner, R. Kalyanaraman Nanotechnology 2010 155601 8

[14] L. Longstreth-Spoor, J. Trice, H. Garcia, C. Zhang, R. Kalyanaraman J. Phys. D : Appl. Phys. 2006 5149 5159

[15] C. Favazza, J. Trice, R. Kalyanaraman, R. Sureshkumar Appl. Phys. Lett. 2007 043105 7

[16] H. Krishna, N. Shirato, S. Yadavali, R. Sachan, J. Strader, R. Kalyanaraman ACS Nano 2011 470 476

[17] F. Brochard-Wyart, P. Martin, C. Redon Langmuir 1993 3682 3690

[18] P. Lambooy, K.C. Phelan, O. Haugg, G. Krausch Phys. Rev. Lett. 1996 1110 1113

[19] M. Sferrazza, M. Heppenstall-Butler, R. Cubitt, D. Bucknall, J. Webster, R. A. L. Jones Phys. Rev. Lett. 1998 5173 5176

[20] M.O. David, G. Reiter, T. Sitthai, J. Schultz Langmuir 1998 5667 5672

[21] R.A. Segalman, P.F. Green Macromolecules 1999 801 807

[22] C. Wang, G. Krausch, M. Geoghegan Langmuir 2001 6269 6274

[23] J.P. De Silva, M. Geoghegan, A.M. Higgins, G. Krausch, M.O. David, G. Reiter Phys. Rev. Lett. 2007 267802 5

[24] L. Xu, T. Shi, L. An J. Chem. Phys. 2009 184903 10

[25] A. Pototsky, M. Bestehorn, D. Merkt, U. Thiele Phys. Rev. E 2004 025201 4

[26] A. Pototsky, M. Bestehorn, D. Merkt J. Chem. Phys. 2005 224711 23

[27] D. Bandyopadhyay, R. Gulabani, A. Sharma Ind. Eng. Chem. Res. 2005 1259 1272

[28] L.S. Fisher, A.A. Golovin J. Colloid Interface Science 2005 515 528

[29] D. Merkt, A. Pototsky, M. Bestehorn, U. Thiele Phys. Fluids 2005 064104 23

[30] A. Pototsky, M. Bestehorn, D. Merkt, U. Thiele Europhys. Lett. 2006 665 671

[31] D. Bandyopadhyay, A. Sharma J. Chem. Phys. 2006 054711 13

[32] A.A. Nepomnyashchy, I. B. Simanovskii Phys. Fluids 2006 112101 11

[33] A.A. Nepomnyashchy, I.B. Simanovskii Phys. Fluids 2007 122103 14

[34] A.A. Nepomnyashchy, I.B. Simanovskii Microgravity Sci. Technol. 2009 S261 S269

[35] B.B. Yellen, O. Hovorka, G. Friedman Proc. Nat. Acad. Sci. 2005 8860 8864

[36] M.A.M. Gijs Microfluidics and Nanofluidics 2004 22 40

[37] Y.M. Hao, M. Chen, Z.B. Hu J. Hazard. Mat. 2010 392 399

[38] J. Wang, L.Y. Wang, Y. Sun, X.N. Zhu, H.Y. Xu, N. Bi, H.Q. Zhang, Y.B. Cao, X.H. Wang, D.Q. Song Acta Chimica Sinica 2010 263 268

[39] B. Sepúlveda, A. Calle, L.M. Lechuga, G. Armelles Opt. Lett. 2006 1085 1087

[40] D.M. Newman, R.J. Matelon, M.L. Wears, L.B. Savage IEEE J. Sel Top. Quant. Elec. 2010 573 580

[41] R. Bahuguna, M. Mina, R.J. Weber IEEE Trans. Mag. 2007 2680 2682

[42] L. Eldada Rev. Sci. Instrum. 2004 575 593

[43] K. Yang, C. Clavero, J. R. Skuza, M. Varela, R. A. Lukaszew J. Appl. Phys. 2010 103924 5

[44] P.K. Jain, Y. Xiao, R. Walsworth, A.E. Cohen Nano Lett. 2009 1644 1650

[45] N. Pazos-Perez, Y. Gao, M. Hilgendorff, S. Irsen, J. Pereez-Juste, M. Spasova, M. Farle, L.M. Liz-Marzan, M. Giersig Chem. Mat. 2007 4415 4422

[46] V.S. Ajaev, D.A. Willis Phys. Fluids 2003 3144 7

[47] A.S. Basu, Y.B. Gianchandani Appl. Phys. Lett. 2007 034102 3

[48] F.J. Higuera Phys. Fluids 2000 2186 12

[49] A. Oron, Y. Peles Phys. Fluids 1998 537 3

[50] A. Oron Phys. Fluids 2000 29 13

[51] R.O. Grigoriev Phys. Fluids 2002 1895 15

[52] L. Kondic, J.A. Diez, Philip D. Rack, Yingfeng Guan, Jason D. Fowlkes Phys. Rev. E 2009 026302 7

[53] Y. Wu, J. D. Fowlkes, P. D. Rack, J. A. Diez, L. Kondic Langmuir 2010 11972 11979

[54] Y. Wu, J. D. Fowlkes, N. A. Roberts, J. A. Diez, L. Kondic, A. G. Gonzalez, P. D. Rack Langmuir 2011 13314 13323

[55] H. Krishna, N. Shirato, C. Favazza, R. Kalyanaraman Phys. Chem. Chem. Phys. 2009 8136 8143

[56] A. Atena, M. Khenner Phys. Rev. B 2009 075402 11

[57] A. Oron, S.H. Davis, S.G. Bankoff Rev. Mod. Phys. 1997 931 980

[58] M. Khenner, S. Yadavali, R. Kalyanaraman Phys. Fluids 2011 122105 14

[59] C. Favazza, R. Kalyanaraman, R. Sureshkumar J. Appl. Phys. 2007 104308 6

[60] B.V. Derjaguin, L.F. Leonov, V.I. Roldughin J. Colloid Interface Sci. 1985 207 214

[61] S. Yadavali, R. Kalyanaraman. Morphology transitions in ternary dewetting systems. Submitted.

[62] S. Yadavali, R. Kalyanaraman. Thermal modeling for multilayer thin films using pulsed laser induced dewetting. In preparation.

[63] J.S.C. Prentice J. Phys. D : Appl. Phys. 2000 3139 3145

[64] S.H. Davis Proc. Roy. Soc. Ser. A 1969 341 358

[65] V.M. Starov, M.G. Velarde, C.J. Radke. Wetting and Spreading Dynamics. CRC, Boca Raton, 2007.

[66] J. Israelachvili. Intermolecular and Surface Forces. Academic, London, 1991.

[67] E. Hairer, G. Wanner J. Comput. Appl. Math. 1999 93 111

[68] P. N. Brown, G. D. Byrne, A. C. Hindmarsh SIAM J. Sci. Stat. Comput. 1989 1038 1051

[69] M.H. Ward Phys. Fluids 2011 062105 14

[70] K. Glasner, T. Witelski Phys. Rev. E 2003 016302 12

Cité par Sources :