Effects of In-plane Elastic Stress and Normal External Stress on Viscoelastic Thin Film Stability
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 4, pp. 6-19.

Voir la notice de l'article provenant de la source EDP Sciences

Motivated by recent experiments on the electro-hydrodynamic instability of spin-cast polymer films, we study the undulation instability of a thin viscoelastic polymer film under in-plane stress and in the presence of either a close by contactor or an electric field, both inducing a normal stress on the film surface. We find that the in-plane stress affects both the typical timescale of the instability and the unstable wavelengths. The film stability is also sensitive to the boundary conditions used at the film-substrate interface. We have considered two conditions, either rigidly attaching the film to the substrate or allowing for slip.
DOI : 10.1051/mmnp/20127402

F. Closa 1 ; F. Ziebert 2, 3 ; E. Raphaël 1

1 Laboratoire de Physico–Chimie Théorique – UMR CNRS Gulliver 7083, ESPCI 10 rue Vauquelin, F-75231 Paris, France
2 Physikalisches Institut, Albert–Ludwigs–Universität, 79104 Freiburg, Germany
3 Institut Charles Sadron, 23 rue du Loess, 67034 Strasbourg, France
@article{MMNP_2012_7_4_a1,
     author = {F. Closa and F. Ziebert and E. Rapha\"el},
     title = {Effects of {In-plane} {Elastic} {Stress} and {Normal} {External} {Stress} on {Viscoelastic} {Thin} {Film} {Stability}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {6--19},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2012},
     doi = {10.1051/mmnp/20127402},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127402/}
}
TY  - JOUR
AU  - F. Closa
AU  - F. Ziebert
AU  - E. Raphaël
TI  - Effects of In-plane Elastic Stress and Normal External Stress on Viscoelastic Thin Film Stability
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 6
EP  - 19
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127402/
DO  - 10.1051/mmnp/20127402
LA  - en
ID  - MMNP_2012_7_4_a1
ER  - 
%0 Journal Article
%A F. Closa
%A F. Ziebert
%A E. Raphaël
%T Effects of In-plane Elastic Stress and Normal External Stress on Viscoelastic Thin Film Stability
%J Mathematical modelling of natural phenomena
%D 2012
%P 6-19
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127402/
%R 10.1051/mmnp/20127402
%G en
%F MMNP_2012_7_4_a1
F. Closa; F. Ziebert; E. Raphaël. Effects of In-plane Elastic Stress and Normal External Stress on Viscoelastic Thin Film Stability. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 4, pp. 6-19. doi : 10.1051/mmnp/20127402. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127402/

[1] M. Adda-Bedia, L. Mahadevan Proc. R. Soc. Lond. A 2006 3233 3251

[2] R. J. Asaro, W. A. Tiller Metall. Trans. B 1972 1789 1796

[3] D. R. Barbero, U. Steiner Phys. Rev. Lett. 2009 1 4

[4] H. Bodiguel, C. Fretigny Eur. Phys. J. E 2006 185 193

[5] L. Bureau, L. Léger Langmuir 2004 4523 4529

[6] F. Closa, F. Ziebert, E. Raphaël Phys. Rev. E 2011 1 13

[7] A. Ghatak Phys. Rev. E 2006 1 7

[8] A. Ghatak, M. K. Chaudhury J. Adh. 2007 679 704

[9] A. Ghatak, M. K. Chaudhury, V. Shenoy, A. Sharma Phys. Rev. Lett. 2000 4329 4332

[10] M. A. Grinfeld Dok. Akad. Nauk SSSR 1986 1358 1363

[11] J. D. Jackson. Classical Electrodynamics. Wiley, New York (1998).

[12] L. D. Landau, E. M. Lifshitz. Theory of Elasticity. Pergamon Press, New York, 1986.

[13] J. R. Melcher Phys. Fluids 1961 1348 1354

[14] C. W. Macosko. Rheology : Principles, Measurements, and Applications. Wiley, New York (1994).

[15] K. Norrman, A. Ghanbari-Siahkali, N. B. Larsen Annu. Rep. Prog. Chem., Sect. C 2005 174 201

[16] A. Onuki Physica A 1995 38 52

[17] K. R. Rajagopal, G. Saccomandi Q. J. Mechanics Appl. Math. 2003 311 326

[18] G. Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele, T. Vilmin, E. Raphaël Nature Mat. 2005 754 758

[19] E. Schäffer, T. Thurn-Albrecht, T. P. Russell, U. Steiner Europhys. Lett. 2001 518 524

[20] V. Shenoy, A. Sharma J. Mech. Phys. Solids 2002 1155 1173

[21] G. I. Taylor, A. D. Mcewan J. Fluid Mech. 1965 1 15

[22] G. Tomar, V. Shankar, A. Sharma, G. Biswas J. Non-Newtonian Fluid Mech. 2007 120 130

[23] Y. Tsori Rev. Mod. Phys. 2009 1471 1494

[24] T. Vilmin, E. Raphaël, P. Damman, S. Sclavons, S. Gabriele, M. Hamieh, G. Reiter Europhys. Lett. 2006 906 912

[25] T. Vilmin, F. Ziebert, E. Raphaël Langmuir 2010 3257 3260

[26] F. Ziebert, E. Raphaël. Dewetting of thin polymer films : Influence of interface evolution. EPL 86 (2009), 46001, p1-p6.

[27] F. Ziebert, E. Raphaël Phys. Rev. E 2009 1 10

[28] F. Ziebert, W. Zimmermann Phys. Rev. Lett. 2004 159801 1

[29] Note that Yc, Kc and Kfg are determined by elasticity, the viscosity does not play a role. However, Kfg can exist only if η ≠ 0, else, the problem is a static problem and Kfg is not defined.

Cité par Sources :