Modelling and Mathematical Analysis of the Glass Eel Migration in the Adour River Estuary
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 3, pp. 168-185.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper we are interested in a mathematical model of migration of grass eels in an estuary. We first revisit a previous model proposed by O. Arino and based on a degenerate convection-diffusion equation of parabolic-hyperbolic type with time-varying subdomains. Then, we propose an adapted mathematical framework for this model, we prove a result of existence of a weak solution and we propose some numerical simulations.
DOI : 10.1051/mmnp/20127311

M. Odunlami 1 ; G. Vallet 1

1 UMR CNRS 5142 - IPRA BP 1155 64013 Pau Cedex - France
@article{MMNP_2012_7_3_a10,
     author = {M. Odunlami and G. Vallet},
     title = {Modelling and {Mathematical} {Analysis} of the {Glass} {Eel} {Migration} in the {Adour} {River} {Estuary}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {168--185},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2012},
     doi = {10.1051/mmnp/20127311},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127311/}
}
TY  - JOUR
AU  - M. Odunlami
AU  - G. Vallet
TI  - Modelling and Mathematical Analysis of the Glass Eel Migration in the Adour River Estuary
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 168
EP  - 185
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127311/
DO  - 10.1051/mmnp/20127311
LA  - en
ID  - MMNP_2012_7_3_a10
ER  - 
%0 Journal Article
%A M. Odunlami
%A G. Vallet
%T Modelling and Mathematical Analysis of the Glass Eel Migration in the Adour River Estuary
%J Mathematical modelling of natural phenomena
%D 2012
%P 168-185
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127311/
%R 10.1051/mmnp/20127311
%G en
%F MMNP_2012_7_3_a10
M. Odunlami; G. Vallet. Modelling and Mathematical Analysis of the Glass Eel Migration in the Adour River Estuary. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 3, pp. 168-185. doi : 10.1051/mmnp/20127311. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127311/

[1] Adimurthi, S. Mishra, G.-D. Veerappa Gowda J. Differential Equations 2007 1 31

[2] G. Aguilar, L. Lévi, M. Madaune-Tort. Nonlinear multidimensional parabolic-hyperbolic equations. Proceedings of the 2006 International Conference in honor of Jacqueline Fleckinger, Electron. J. Differ. Equ. Conf., 16 (2007), 15–28.

[3] A. Ambrosetti, A. Malchiodi. Nonlinear analysis and semilinear elliptic problems. Cambridge University Press, Cambridge, 2007.

[4] B. Andreianov, K. H. Karlsen, N. H. Risebro Arch. Ration. Mech. Anal. 2011 27 86

[5] A. Bardonnet, V. Bolliet, V. Belon Journal of Experimental Marine Biology and Ecology 2005 181 190

[6] C. Bardos Ann. Sci. École Norm. Sup. 1970 185 233

[7] M. Bendahmane, K. H. Karlsen. Anisotropic doubly nonlinear degenerate parabolic equations. Proceedings of ENUMATH 2005 : Numerical mathematics and advanced applications, Springer, (2006), 381–386.

[8] S. Berres, R. Bürger, H. Frid SIAM J. Math. Anal. 2006 557 573

[9] V. Bolliet, P. Lambert, J. Rives, A. Bardonnet Journal of Experimental Marine Biology and Ecology 2007 54 66

[10] J. Carrillo Arch. Ration. Mech. Anal. 1999 269 361

[11] G.-Q. Chen, K. H. Karlsen Trans. Amer. Math. Soc. 2006 937 963

[12] G.-Q. Chen, B. Perthame Notices Amer. Math. Soc. 2010 737 739

[13] R. Dautray, J.-L. Lions. Analyse mathématique et calcul numérique pour les sciences et les techniques. Masson, 1988.

[14] M. De Casamajor, P. Prouzet, P. Lazure Aquatic Living Resources 2001 411 420

[15] J. Donea, A. Huerta, J.-P. Ponthot, A. Rodríguez-Ferra. Arbitrary Lagrangian- Eulerian methods in Encyclopedia of computational mechanics, Vol. 1. John Wiley Sons Ltd., Chichester, 2004.

[16] J. Droniou Potential Anal. 2002 181 203

[17] G. Gagneux, M. Madaune-Tort. Analyse mathématique de modèles non linéaires de l’ingénierie pétrolière, Springer-Verlag, Berlin, 1996.

[18] F. Gastaldi, A. Quarteroni, G. Sacchi Landriani Comput. Methods Appl. Mech. Engrg. 1990 347 354

[19] F. Gastaldi, L. Gastaldi IMA J. Numer. Anal. 1994 111 135

[20] D. Gilbarg, N.-S. Trudinger. Elliptic partial differential equations of second order. Springer-Verlag, Berlin, 2001.

[21] J. Jimenez, L. Lévi Adv. Math. Sci. Appl. 2010 51 75

[22] S.-N. Kružkov Mat. Sb. (N.S.) 1970 228 255

[23] J.-L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris, 1969.

[24] J.-L. Lions, E. Magenes. Problèmes aux limites non homogènes et applications I. Dunod, Paris, 1968.

[25] M. Odunlami. "GlassEel2D“. A software to simulate glass eel behavior in estuaries, University of Pau, https://redmine.univ-pau.fr/projects/glasseel2D, 2011.

[26] O. Pardo. Contribution à l’étude et à la modélisation d’un modèle de convection-diffusion dégénéré : application à l’étude du comportement migratoire des civelles dans l’estuaire de l’Adour. PhD thesis, Université de Pau, 2002.

[27] P. Prouzet and EELIAD partners. Personal communications. IFREMER and http://www.eeliad.com/, 2009-2012.

[28] P. Prouzet, M. Odunlami, E. Duquesne, A. Boussouar Aquatic Living Resources 2009 525 534

[29] J.-E. Roberts, J.-M. Thomas. Mixed and hybrid methods. In Handbook of numerical analysis II. North-Holland, Amsterdam, 1991.

[30] G. Vallet, P. Wittbold Infinite Dimensional Analysis QuantumProbability 2009 1 39

Cité par Sources :