Low-Dimensional Description of Pulses under the Action of Global Feedback Control
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 83-94.

Voir la notice de l'article provenant de la source EDP Sciences

The influence of a global delayed feedback control which acts on a system governed by a subcritical complex Ginzburg-Landau equation is considered. The method based on a variational principle is applied for the derivation of low-dimensional evolution models. In the framework of those models, one-pulse and two-pulse solutions are found, and their linear stability analysis is carried out. The application of the finite-dimensional model allows to reveal the existence of chaotic oscillatory regimes and regimes with double-period and quadruple-period oscillations. The diagram of regimes resembles those found in the damped-driven nonlinear Schrödinger equation. The obtained results are compared with the results of direct numerical simulations of the original problem.
DOI : 10.1051/mmnp/20127208

Y. Kanevsky 1 ; A. A. Nepomnyashchy 1

1 Department of Mathematics, Technion – Israel Institute of Technology Haifa, 32000, Israel
@article{MMNP_2012_7_2_a7,
     author = {Y. Kanevsky and A. A. Nepomnyashchy},
     title = {Low-Dimensional {Description} of {Pulses} under the {Action} of {Global} {Feedback} {Control}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {83--94},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2012},
     doi = {10.1051/mmnp/20127208},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127208/}
}
TY  - JOUR
AU  - Y. Kanevsky
AU  - A. A. Nepomnyashchy
TI  - Low-Dimensional Description of Pulses under the Action of Global Feedback Control
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 83
EP  - 94
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127208/
DO  - 10.1051/mmnp/20127208
LA  - en
ID  - MMNP_2012_7_2_a7
ER  - 
%0 Journal Article
%A Y. Kanevsky
%A A. A. Nepomnyashchy
%T Low-Dimensional Description of Pulses under the Action of Global Feedback Control
%J Mathematical modelling of natural phenomena
%D 2012
%P 83-94
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127208/
%R 10.1051/mmnp/20127208
%G en
%F MMNP_2012_7_2_a7
Y. Kanevsky; A. A. Nepomnyashchy. Low-Dimensional Description of Pulses under the Action of Global Feedback Control. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 83-94. doi : 10.1051/mmnp/20127208. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127208/

[1] I.S. Aranson, L. Kramer Rev. Mod. Phys. 2002 99 143

[2] I.V. Barashenkov, M.M. Bogdan, V.I. Korobov Europhys. Lett. 1991 113 118

[3] I.V. Barashenkov, Yu.S. Smirnov Phys. Rev. E 1996 5707 5725

[4] I.V. Barashenkov, Yu.S. Smirnov, N.V. Alexeeva Phys. Rev. E 1998 2350 2364

[5] I.V. Barashenkov, E.V. Zemlyanaya Phys. Rev. Lett. 1999 2568 2571

[6] I.V. Barashenkov, E.V. Zemlyanaya Phys. Rev. E 2011 056610

[7] M. Bondila, I.V. Barashenkov, M.M. Bogdan Physica D 1995 314 320

[8] S. Chávez Cerda, S.B. Cavalcanti, J.M. Hickmann Eur. Phys. J. D 1998 313 316

[9] S.H. Davis. Theory of Solidification. Cambridge University Press, Cambridge, 2001.

[10] A.A. Golovin, A.A. Nepomnyashchy Phys. Rev. E 2006 046212

[11] L.M. Hocking, K. Stewartson Proc. Roy. Soc. Lond. A 1972 289 313

[12] Y. Kanevsky, A.A. Nepomnyashchy Phys. Rev. E 2007 066305

[13] Y. Kanevsky, A.A. Nepomnyashchy Physica D 2010 87 94

[14] B.A. Malomed Progress in Optics 2002 69 191

[15] J.D. Moores Opt. Commun. 1993 65 70

[16] A.A. Nepomnyashchy, A.A. Golovin, V. Gubareva, V. Panfilov Physica D 2004 61 81

[17] K. Nozaki, N. Bekki J. Phys. Soc. Jpn. 1984 1581 1582

[18] N.R. Pereira, L. Stenflo Phys. Fluids 1977 1733 1734

[19] S. Popp, O. Stiller, E. Kuznetsov, L. Kramer Physica D 1998 81 107

[20] J.A. Powell, P.K. Jakobsen Physica D 1993 132 152

[21] B.Y. Rubinstein, A.A. Nepomnyashchy, A.A. Golovin Phys. Rev. E 2007 046213

[22] W. Schöpf, L. Kramer Phys. Rev. Lett. 1991 2316 2319

[23] W. Schöpf, W. Zimmermann Phys. Rev. E 1993 1739 1764

[24] V. Skarka, N.B. Aleksić Phys. Rev. Lett. 2006 013903

[25] E.N. Tsoy, A. Ankiewicz, N. Akhmediev Phys. Rev. E 2006 036621

Cité par Sources :