Modeling the Impact of Anticancer Agents on Metastatic Spreading
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 1, pp. 306-336.

Voir la notice de l'article provenant de la source EDP Sciences

Treating cancer patients with metastatic disease remains an ultimate challenge in clinical oncology. Because invasive cancer precludes or limits the use of surgery, metastatic setting is often associated with (poor) survival, rather than sustained remission, in patients with common cancers like lung, digestive or breast carcinomas. Mathematical modeling may help us better identify non detectable metastatic status to in turn optimize treatment for patients with metastatic disease. In this paper we present a family of models for the metastatic growth. They are based on four principles : to be as simple as possible, involving the least possible number of parameters, the main informations are obtained from the primary tumor and being able to recover the variety of phenomena observed by the clinicians. Several simulations of therapeutic strategies are presented illustrating possible applications of modeling to the clinic.
DOI : 10.1051/mmnp/20127114

S. Benzekry 1, 2 ; N. André 3, 4 ; A. Benabdallah 1 ; J. Ciccolini 2 ; C. Faivre 2 ; F. Hubert 1 ; D. Barbolosi 2

1 CMI-LATP, UMR 6632, Université de Provence, Technopôle Château-Gombert 39, rue F. Joliot-Curie, 13453 Marseille cedex 13, France
2 Laboratoire de Toxicocinétique et Pharmacocinétique UMR INSERM 911, CRO2 27, boulevard Jean Moulin, 13005 Marseille, France
3 Service d’Hématologie et Oncologie Pédiatrique, Hôpital pour enfants de La Timone Marseille, France
4 Metronomics Global Health Initiative
@article{MMNP_2012_7_1_a13,
     author = {S. Benzekry and N. Andr\'e and A. Benabdallah and J. Ciccolini and C. Faivre and F. Hubert and D. Barbolosi},
     title = {Modeling the {Impact} of {Anticancer} {Agents} on {Metastatic} {Spreading}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {306--336},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2012},
     doi = {10.1051/mmnp/20127114},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127114/}
}
TY  - JOUR
AU  - S. Benzekry
AU  - N. André
AU  - A. Benabdallah
AU  - J. Ciccolini
AU  - C. Faivre
AU  - F. Hubert
AU  - D. Barbolosi
TI  - Modeling the Impact of Anticancer Agents on Metastatic Spreading
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 306
EP  - 336
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127114/
DO  - 10.1051/mmnp/20127114
LA  - en
ID  - MMNP_2012_7_1_a13
ER  - 
%0 Journal Article
%A S. Benzekry
%A N. André
%A A. Benabdallah
%A J. Ciccolini
%A C. Faivre
%A F. Hubert
%A D. Barbolosi
%T Modeling the Impact of Anticancer Agents on Metastatic Spreading
%J Mathematical modelling of natural phenomena
%D 2012
%P 306-336
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127114/
%R 10.1051/mmnp/20127114
%G en
%F MMNP_2012_7_1_a13
S. Benzekry; N. André; A. Benabdallah; J. Ciccolini; C. Faivre; F. Hubert; D. Barbolosi. Modeling the Impact of Anticancer Agents on Metastatic Spreading. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 1, pp. 306-336. doi : 10.1051/mmnp/20127114. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127114/

[1] N. André, A. Rome, C. Coze, L. Padovani, E. Pasquier, L. Camoin, J.-C. Gentet Clin. Therapeutics 2008 1336 1340

[2] D. Barbolosi, A. Benabdallah, F. Hubert, F. Verga Math. Biosci. 2009 1 14

[3] D. Barbolosi, G. Freyer, J. Ciccolini, A. Iliadis Bulletin du Cancer 2003 167 175

[4] D. Barbolosi, A. Iliadis Comput. Biol. Med. 2001 157 172

[5] D. Barbolosi, F. Verga, A. Benabdallah, F. Hubert, C. Mercier, J. Ciccolini, C. Faivre Oncologie 2011 528 533

[6] S. Baruchel, M. Diezi, D. Hargrave, D. Stempak, J. Gammon, A. Moghrabi, Mj. Coppes, C.V. Fernandez, E. Bouffet Eur. J. Cancer 2006 2335 2342

[7] S. Benzekry J. Evol. Equ. 2011 187

[8] S. Benzekry M2AN 2012 207 237

[9] S. Benzekry. Passing to the limit 2D-1D in a model for metastatic growth. To appear in J. Biol. Dyn., (2011), http://hal.archives-ouvertes.fr/hal-00521968/fr/.

[10] S. Benzekry and A. Benabdallah. An optimal control problem for anti-cancer therapies in a model for metastatic evolution. In preparation (2011), http://hal.archives-ouvertes.fr/hal-00521968/fr/.

[11] S. Benzekry, G. Chapuisat, J. Ciccolini, A. Erlinger, and Hubert F., A new mathematical model for optimizing the combination between anti-angiogenic and cytotoxic drugs in oncology. In preparation (2011), http://hal.archives-ouvertes.fr/hal-00641476/fr/.

[12] T. Browder, C. E. Butterfield, B. M. Kraling, B. Shi, B. Marshall, M. S. O’Reilly, J. Folkman Cancer Res. 2000 1878 1886

[13] R. Bruno, N. Vivier, J. C. Vergniol, S. L. De Phillips, G. Montay, L. B. Sheiner J. Pharmacokinet Biopharm. 1996 153 172

[14] M. Casanova, A. Ferrari, G. Bisogno, J. H. Merks, G. L. De Salvo, C. Meazza, K. Tettoni, M. Provenzi, I. Mazzarino, M. Carli Cancer 2004 1664 1671

[15] M. Chefrour, J. L. Fischel, P. Formento, S. Giacometti, R. M. Ferri-Dessens, H. Marouani, M. Francoual, N. Renee, C. Mercier, G. Milano, J. Ciccolini J. Chemother. 2010 129 133

[16] L. M. Choi, B. Rood, N. Kamani, D. La Fond, R. J. Packer, M. R. Santi, T. J. Macdonald Pediatr. Blood Cancer 2008 970 975

[17] E. Comen, L. Norton, J. Massague Nat. Rev. Clin. Oncol. 2011 369 377

[18] A. Devys, T. Goudon, P. Laffitte Discret. and contin. dyn. syst. series B 2009

[19] A. D’Onofrio, A. Gandolfi, A. Rocca Cell Prolif. 2009 317 329

[20] J. M.L. Ebos, C. R. Lee, W. Crus-Munoz, G. A. Bjarnason, J. G. Christensen Cancer Cell 2009 232 239

[21] J. Folkman Ann. Surg. 1972 409 416

[22] A. Fontana, A. Falcone, L. Derosa, T. Di Desidero, R. Danesi, G. Bocci Drugs Aging 2010 689 696

[23] A. B. Francesconi, S. Dupre, M. Matos, D. Martin, B. G. Hughes, D. K. Wyld, J. D. Lickliter J. Clin. Neurosci. 2010 970 974

[24] G. Gasparini, R. Longo, M. Fanelli, B. A. Teicher Journal of Clinical Oncology 2005 1295 1311

[25] P. Hahnfeldt, J. Folkman, L. Hlatky J. Theor. Biol. 2003 545 554

[26] P. Hahnfeldt, D. Panigraphy, J. Folkman, L. Hlatky Cancer Research 1999 4770 4775

[27] A. Iliadis, D. Barbolosi Comput. Biomed. Res. 2000 211 226

[28] K. Iwata, K. Kawasaki, Shigesada N J. Theor. Biol. 2000 177 186

[29] R. K. Jain Nature Medicine 2001 987 989

[30] K. Jordan, H. H. Wolf, W. Voigt, T. Kegel, L. P. Mueller, T. Behlendorf, C. Sippel, D. Arnold, H. J. Schmoll Bone Marrow Transplant. 2010 1704 1709

[31] R.S. Kerbel, B.A. Kamen Nature Reviews Cancer 2004 423 436

[32] M. W. Kieran, C. D. Turner, J. B. Rubin, S.N. Chi, M.A. Zimmerman, C. Chordas, G. Klement, A. Laforme, A. Gordon, A. Thomas, D. Neuber, T. Browder, J. Folkman J. Pediatr. Hematol. Oncol. 2005 573 581

[33] S. Koscielny, M. Tubiana, M. G. Le, A. J. Valleron, H. Mouriesse, G. Contesso, D. Sarrazin Br. J. Cancer 1984 709 715

[34] J. F. Lu, R. Bruno, S. Eppler, W. Novotny, B. Lum, J. Gaudreault Cancer Chemother. Pharmacol. 2008 779 786

[35] C. Meille, J. C. Gentet, D. Barbolosi, N. Andre, F. Doz, A. Iliadis Clin. Pharmacol. Ther. 2008 873 881

[36] C. Meille, A. Iliadis, D. Barbolosi, N. Frances, G. Freyer J. Pharmacokinet. Pharmacodyn. 2008 619 633

[37] M. Paez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Vinals, M. Inoue, G. Bergers, D. Hanahan, O. Casanovas Cancer Cell 2009 220 231

[38] E. Pasquier, M. Kavallaris, N. Andre Nat. Rev. Clin. Oncol. 2010 455 465

[39] D. A. Reardon, A. Desjardins, K. Peters, S. Gururangan, J. Sampson, J. N. Rich, R. Mclendon, J. E. Herndon, J. Marcello, S. Threatt, A. H. Friedman, J. J. Vredenburgh, H. S. Friedman J. Neurooncol. 2011 371 379

[40] A. R. Reynolds Dose-Response 2010 253 284

[41] G. J. Riely, N. A. Rizvi, M. G. Kris, D. T. Milton, D. B. Solit, N. Rosen, E. Senturk, C. G. Azzoli, J. R. Brahmer, F. M. Sirotnak, V. E. Seshan, M. Fogle, M. Ginsberg, Miller V. A., C. M. Rudin J. Clin. Oncol. 2009 264 270

[42] D. R. Spigel, P. M. Townley, D. M. Waterhouse, L. Fang, I. Adiguzel, J. E. Huang, D. A. Karlin, L. Faoro, F. A. Scappaticci, M. A. Socinski J. Clin. Oncol. 2011 2215 2222

[43] D. Stempak, J. Gammon, J. Halton, A. Moghrabi, G. Koren, S. Baruchel J. Pediatr. Hematol. Oncol. 2006 720 728

[44] J. Sterba, D. Valik, P. Mudry, T. Kepak, Z. Pavelka, V. Bajciova, K. Zitterbart, V. Kadlecova, P. Mazanek Onkologie 2006 308 313

[45] F. Verga. Modélisation mathématique de processus métastatiques. Ph.D. thesis, Université de Provence, 2010.

[46] P. Viens, H. Roche, P. Kerbrat, P. Fumoleau, J. P. Guastalla, T. Delozier Am. J. Clin. Oncol. 2001 328 335

Cité par Sources :