Modeling Spatial Effects in Early Carcinogenesis : Stochastic Versus Deterministic Reaction-Diffusion Systems
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 1, pp. 245-260.

Voir la notice de l'article provenant de la source EDP Sciences

We consider the early carcinogenesis model originally proposed as a deterministic reaction-diffusion system. The model has been conceived to explore the spatial effects stemming from growth regulation of pre-cancerous cells by diffusing growth factor molecules. The model exhibited Turing instability producing transient spatial spikes in cell density, which might be considered a model counterpart of emerging foci of malignant cells. However, the process of diffusion of growth factor molecules is by its nature a stochastic random walk. An interesting question emerges to what extent the dynamics of the deterministic diffusion model approximates the stochastic process generated by the model. We address this question using simulations with a new software tool called sbioPN (spatial biological Petri Nets). The conclusion is that whereas single-realization dynamics of the stochastic process is very different from the behavior of the reaction diffusion system, it is becoming more similar when averaged over a large number of realizations. The degree of similarity depends on model parameters. Interestingly, despite the differences, typical realizations of the stochastic process include spikes of cell density, which however are spread more uniformly and are less dependent of initial conditions than those produced by the reaction-diffusion system.
DOI : 10.1051/mmnp/20127111

R. Bertolusso 1 ; M. Kimmel 1, 2

1 Department of Statistics, Rice University, 6100 Main Street, MS138, Houston, TX 77005, USA
2 Systems Engineering Group, Silesian University of Technology, 44-100 Gliwice, Poland
@article{MMNP_2012_7_1_a10,
     author = {R. Bertolusso and M. Kimmel},
     title = {Modeling {Spatial} {Effects} in {Early} {Carcinogenesis} : {Stochastic} {Versus} {Deterministic} {Reaction-Diffusion} {Systems}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {245--260},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2012},
     doi = {10.1051/mmnp/20127111},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127111/}
}
TY  - JOUR
AU  - R. Bertolusso
AU  - M. Kimmel
TI  - Modeling Spatial Effects in Early Carcinogenesis : Stochastic Versus Deterministic Reaction-Diffusion Systems
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 245
EP  - 260
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127111/
DO  - 10.1051/mmnp/20127111
LA  - en
ID  - MMNP_2012_7_1_a10
ER  - 
%0 Journal Article
%A R. Bertolusso
%A M. Kimmel
%T Modeling Spatial Effects in Early Carcinogenesis : Stochastic Versus Deterministic Reaction-Diffusion Systems
%J Mathematical modelling of natural phenomena
%D 2012
%P 245-260
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127111/
%R 10.1051/mmnp/20127111
%G en
%F MMNP_2012_7_1_a10
R. Bertolusso; M. Kimmel. Modeling Spatial Effects in Early Carcinogenesis : Stochastic Versus Deterministic Reaction-Diffusion Systems. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 1, pp. 245-260. doi : 10.1051/mmnp/20127111. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127111/

[1] A. Marciniak-Czochra, M. Kimmel Mathematical Modelling of Natural Phenomena 2008 90 114

[2] A. Marciniak-Czochra, M. Kimmel Computational & Mathematical Methods in Medicine 2006 189 213

[3] A. Marciniak-Czochra, M. Kimmel Math. Mod. Meth. Appl. Sci. 2007 1693 1719

[4] A. Marciniak-Czochra, M. Kimmel Journal of Theoretical Biology 2006 375 387

[5] A. Marciniak-Czochra, M. Ptashnyk SIAM J. Math. Anal. 2008 215 237

[6] A. Marciniak-Czochra, G. Karch, K. Suzuki. Unstable patterns in reaction-diffusion model of early carcinogenesis. arXiv :1104.3592v1, (2011).

[7] R. Bertolusso. Computational models of signaling processes in cells with applications : Influence of stochastic and spatial effects. PhD thesis (2011), Rice University, Houston, TX.

[8] R. Erban, S. J. Chapman, P. Maini. A practical guide to stochastic simulations of reaction-diffusion processes. ArXiv e-prints, (2007), April.

[9] S. A. Isaacson, C. S. Peskin SIAM J. Scientific Computing 2006 47 74

[10] A. Slepoy, A. P. Thompson, S. J. Plimpton J. Chem. Phys. 2008

[11] J. Paulsson, O. G. Berg, M. Ehrenberg Proc. Natl. Acad. Sci. U.S.A. 2000 7148 53

Cité par Sources :