Stability Analysis of Cell Dynamics in Leukemia
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 1, pp. 203-234.

Voir la notice de l'article provenant de la source EDP Sciences

In order to better understand the dynamics of acute leukemia, and in particular to find theoretical conditions for the efficient delivery of drugs in acute myeloblastic leukemia, we investigate stability of a system modeling its cell dynamics. The overall system is a cascade connection of sub-systems consisting of distributed delays and static nonlinear feedbacks. Earlier results on local asymptotic stability are improved by the analysis of the linearized system around the positive equilibrium. For the nonlinear system, we derive stability conditions by using Popov, circle and nonlinear small gain criteria. The results are illustrated with numerical examples and simulations.
DOI : 10.1051/mmnp/20127109

H. Özbay 1 ; C. Bonnet 2 ; H. Benjelloun 3 ; J. Clairambault 4, 5

1 Dept. of Electrical and Electronics Eng., Bilkent University, Ankara, 06800, Turkey
2 INRIA Saclay - Île-de-France, Equipe DISCO, LSS - SUPELEC 3 rue Joliot Curie, 91192 Gif-sur-Yvette, France
3 Ecole Centrale Paris, Grande Voie des Vignes, Châtenay-Malabry, France
4 INRIA Paris-Rocquencourt, Domaine de Voluceau, B.P. 105, 78153 Le Chesney
5 INSERM team U 776 “Biological Rhythms and Cancers”, Hôpital Paul-Brousse 14 Av. Paul-Vaillant-Couturier, 94807 Villejuif, France
@article{MMNP_2012_7_1_a8,
     author = {H. \"Ozbay and C. Bonnet and H. Benjelloun and J. Clairambault},
     title = {Stability {Analysis} of {Cell} {Dynamics} in {Leukemia}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {203--234},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2012},
     doi = {10.1051/mmnp/20127109},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127109/}
}
TY  - JOUR
AU  - H. Özbay
AU  - C. Bonnet
AU  - H. Benjelloun
AU  - J. Clairambault
TI  - Stability Analysis of Cell Dynamics in Leukemia
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 203
EP  - 234
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127109/
DO  - 10.1051/mmnp/20127109
LA  - en
ID  - MMNP_2012_7_1_a8
ER  - 
%0 Journal Article
%A H. Özbay
%A C. Bonnet
%A H. Benjelloun
%A J. Clairambault
%T Stability Analysis of Cell Dynamics in Leukemia
%J Mathematical modelling of natural phenomena
%D 2012
%P 203-234
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127109/
%R 10.1051/mmnp/20127109
%G en
%F MMNP_2012_7_1_a8
H. Özbay; C. Bonnet; H. Benjelloun; J. Clairambault. Stability Analysis of Cell Dynamics in Leukemia. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 1, pp. 203-234. doi : 10.1051/mmnp/20127109. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127109/

[1] H. T. Alaoui, R. Yafia Mathematical Biosciences 2007 176 184

[2] M. Adimy, F. Crauste Discrete and Continuous Dynamical Systems - Series B 2007 19 38

[3] M. Adimy, F. Crauste Mathematical and Computer Modelling 2009 2128 2137

[4] M. Adimy, F. Crauste, A. El Abdllaoui Mathematical Modelling of Natural Phenomena 2006 1 19

[5] M. Adimy, F. Crauste, A. El Abdllaoui J. Biological Systems 2008 395 424

[6] M. Adimy, F. Crauste, A. El Abdllaoui C. R. Acad. Sci. Paris, Ser. I 2010 373 377

[7] M. Adimy, F. Crauste, C. Marquet Nonlinear Analysis : Real World Applications 2010 2913 2929

[8] M. Adimy, F. Crauste, S. Ruan SIAM J. Appl. Math. 2005 1328 1352

[9] M. Adimy, F. Crauste, S. Ruan Bulletin of Mathematical Biology 2006 2321 2351

[10] P-A. Bliman. Extension of Popov absolute stability criterion to nonautonomous systems with delays. INRIA Technical Report 3625, February 1999.

[11] P-A. Bliman. Robust absolute stability of delay systems. Nonlinear Control in the Year 2000, A. Isidori, F. Lamnabhi-Lagarrigue, W. Respondek, eds., LNCIS vol. 258, Springer Verlag, 2000, 207–237.

[12] B. M. Boman, M. S. Wicha J. Clinical Oncology 2008 2795 2799

[13] D. Bonnet, J. E. Dick Nature Medicine 1997 730 737

[14] N. G. Čebotarev, N. N. Meĭman (in Russian) Trudy Mat. Inst. Steklov. 1949 3 331

[15] C. Colijn, M. C. Mackey J. Theoretical Biology 2005 117 132

[16] C. Corduneanu. Integral equations and stability of feedback systems. Academic Press, New York, 1973.

[17] R. F. Curtain, H. Logemann, O. Staffans Proc. London Math. Soc. 2003 779 816

[18] C. A. Desoer, M. Vidyasagar. Feedback systems : input-output properties. SIAM Classics in Applied Mathematics, 55, SIAM, 2009.

[19] D. Dingli, F. Michor Stem Cells 2006 2603 2610

[20] D. Dingli, J. M. Pacheco Wiley Interdisciplinary Reviews : Systems Biology and Medicine 2010 235 244

[21] R. C. Dorf, R. H. Bishop. Modern Control Systems (12th Edition). Pearson Educatiýn Inc., New Jersey, 2011.

[22] J. Dyson, R. Villella-Bressan, G. F. Webb Canadian Applied Mathematics Quarterly 1996 65 95

[23] P. Fortin, M. C. Mackey British Journal of Haematology 1999 336 345

[24] C. Foley, M.C. Mackey J. Mathematical Biology 2009

[25] L. Grüne IEEE Trans. on Automatic Control 2002 1499 1504

[26] K. Gu Int. J. Robust and Nonlinear Control 2003 819 831

[27] P. B. Gupta, C. L. Chaffer, R.A. Weinberg Nature Medicine 2009 1010 1012

[28] T. Haferlach Hematology, American Society of Hematology Educational Program 2008 400 411

[29] A. Halanay. Differential Equations, Stability, Oscillations, Time Lags. (in Romanian), Editura Academiei R.P.R., Bucharest, 1963, English version by Academic Press, 1966.

[30] C. Haurie, D. C. Dale, M. C. Mackey Blood 1998 2629 2640

[31] K. J. Hope, L. Jin, J. E. Dick Archives of Medical Research 2003 507 514

[32] B. J. P. Huntly, D. G. Gilliland Nature Reviews : Cancer 2005 311 321

[33] M. E. King, J. Rowe The Oncologist 2007 14 21

[34] L. Kold-Andersen, M. C. Mackey J. Theoretical Biology 2001 113 130

[35] X. Lai, S. Nikolov, O. Wolkenhauer, J. Vera Computational Biology and Chemistry 2009 312 324

[36] Z. Ling, Z. Lin Applied Mathematics Letters 2010 426 431

[37] M. C. Mackey, L. Glass Science 1977 287 289

[38] M. C. Mackey Blood 1978 941 956

[39] M. C. Mackey, C. Ou, L. Pujo-Menjouet, J. Wu SIAM J. Math. Anal. 2006 166 187

[40] J. P. Marie. Private communication. Hôpital St. Antoine, Paris, France, July 2010.

[41] J. A. Martinez-Climent, L. Fontan, R. D. Gascoyne, R. Siebert, F. Prosper Haematologica 2010 293 302

[42] A. G. Mckendrick Proc. Edinburgh Math. Soc. 1925 98 130

[43] W. Michiels, S. Mondie, D. Roose, M. Dambrine. The effect of approximating distributed delay control laws on stability. Advances in time-delay systems, S-I. Niculescu, K. Gu, Eds., Springer-Verlag, LNCSE 38, 2004, 207–222.

[44] F. Michor, T. P. Hughes, Y. Iwasa, S. Branford, N. P. Shah, C. L. Sawyers, M. Nowak Nature 2005 1267 1270

[45] C-I. Morarescu, S-I. Niculescu, W. Michiels International Journal of Tomography & Statistics 2007 128 133

[46] U. Münz, J. M. Rieber, F. Allgöwer. Robust stabilization and control of uncertain distributed delay systems. Topics in Time Delay Systems, J. J. Loiseau et al. Eds., LNCIS 388 (2009), 221–231.

[47] S. L. Noble, E. Sherer, R. E. Hannemann, D. Ramkrishna, T. Vik, A. E. Rundell Journal of Theoretical Biology 2010 990 1002

[48] S-I. Niculescu, V. Ionescu, D. Ivanescu, L. Dugard, J-M. Dion Kybernetica 2000 2 20

[49] S-I. Niculescu, P. S. Kim, K. Gu, P. P. Lee, D. Levy Discrete and Continuous Dynamical Systems Series B 2010 129 156

[50] A. V. Oppenheim, A. S. Willsky, H. Nawab. Signals Systems 2nd ed., Prentice Hall, New Jersey, 1997.

[51] H. Özbay. Introduction to feedback control theory. CRC Press LLC, Boca Raton FL, 2000.

[52] H. Özbay, C. Bonnet, J. Clairambault. Stability analysis of systems with distributed delays and application to hematopoietic cell maturation dynamics. Proc. of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, December 2008, 2050–2055.

[53] H. Özbay, H. Benjelloun, C. Bonnet, J. Clairambault. Stability conditions for a system modeling cell dynamics in leukemia. Preprints of IFAC Workshop on Time Delay Systems, TDS2010, Prague, Czech Republic, June 2010.

[54] D. Peixoto, D. Dingli, J.M. Pacheco Mathematical and Computer Modelling 2011 7 8

[55] B. Perthame. Transport equations in biology. Frontiers in Mathematics, Birkhäuser Verlag, 2007.

[56] V. M. Popov, A. Halanay (in Russian), Automat. i Telemekhanika 1962 849 851

[57] Y. Qu, J. Wei, S. Ruan Physica D : Nonlinear Phenomena 2010 2011 2024

[58] V. Răsvan. Absolute stability of time lag control systems. (in Romanian) Editura Academiei, R.S.R., Bucharest, 1975 (Russian version by Nauka, Moscow, 1983).

[59] V. Răsvan Mathematical Reports 2007 99 110

[60] J. Rowe Best Practice & Research Clinical Haematology. 2008 1 3

[61] N. J. Savill, W. Chadwick, S. E. Reece. Quantitative analysis of mechanisms that govern red blood cell age structure and dynamics during anaemia. PLoS Computational Biology, 5 (2009), doi :10.1371/journal.pcbi.1000416

[62] E. D. Sontag. The ISS philosophy as a unifying framework for stability-like behavior. Nonlinear Control in the Year 2000, vol.2, LNCIS 259 (2001), 443-467, DOI : 10.1007/BFb0110320.

[63] W. R. Sperr, A. W. Hauswirth, S. Florian, L. Öhler, K. Geissler, P. Valent European Journal of Clinical Investigation 2004 31 40

[64] E. I. Verriest. Stability of systems with distributed delays. Preprints of the IFAC Conference on System, Structure and Control, Nantes, France, July 1995, 294–299.

[65] E. I. Verriest. Linear Systems with Rational Distributed Delay : Reduction and Stability. Proc. of the 1999 European Control Conference, DA-12, Karlsruhe, Germany, September 1999.

[66] M. Vidyasagar. Nonlinear system analysis, 2nd Ed., SIAM Classics in Applied Mathematics, vol. 42, SIAM, Philadelphia 2002.

[67] M. Ważewska-Czyżewska, A. Lasota (in Polish) Matematyka Stosowana 1976 23 40

[68] A. Wan, J. Wei J. Math. Anal. Appl. 2008 276 285

[69] G-M. Zou Journal of Cellular Physiology 2007 440 444

Cité par Sources :