Investigation of the Migration/Proliferation Dichotomy and its Impact on Avascular Glioma Invasion
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 1, pp. 105-135.

Voir la notice de l'article provenant de la source EDP Sciences

Gliomas are highly invasive brain tumors that exhibit high and spatially heterogeneous cell proliferation and motility rates. The interplay of proliferation and migration dynamics plays an important role in the invasion of these malignant tumors. We analyze the regulation of proliferation and migration processes with a lattice-gas cellular automaton (LGCA). We study and characterize the influence of the migration/proliferation dichotomy (also known as the “GO-or-Grow" mechanism) on avascular glioma invasion, in terms of invasion speed and width of the infiltration zone. We show that the invasive behavior of the (macroscopic) tumor colony is a highly complex phenomenon that cannot be extrapolated by the sole knowledge of the (microscopic) individual cell phenotype.
DOI : 10.1051/mmnp/20127106

K. Böttger 1 ; H. Hatzikirou 2 ; A. Chauviere 2 ; A. Deutsch 1

1 Center for Information Services and High-Performance Computing, Technische Universität Dresden, 01062 Dresden, Germany
2 Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
@article{MMNP_2012_7_1_a5,
     author = {K. B\"ottger and H. Hatzikirou and A. Chauviere and A. Deutsch},
     title = {Investigation of the {Migration/Proliferation} {Dichotomy} and its {Impact} on {Avascular} {Glioma} {Invasion}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {105--135},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2012},
     doi = {10.1051/mmnp/20127106},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127106/}
}
TY  - JOUR
AU  - K. Böttger
AU  - H. Hatzikirou
AU  - A. Chauviere
AU  - A. Deutsch
TI  - Investigation of the Migration/Proliferation Dichotomy and its Impact on Avascular Glioma Invasion
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 105
EP  - 135
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127106/
DO  - 10.1051/mmnp/20127106
LA  - en
ID  - MMNP_2012_7_1_a5
ER  - 
%0 Journal Article
%A K. Böttger
%A H. Hatzikirou
%A A. Chauviere
%A A. Deutsch
%T Investigation of the Migration/Proliferation Dichotomy and its Impact on Avascular Glioma Invasion
%J Mathematical modelling of natural phenomena
%D 2012
%P 105-135
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127106/
%R 10.1051/mmnp/20127106
%G en
%F MMNP_2012_7_1_a5
K. Böttger; H. Hatzikirou; A. Chauviere; A. Deutsch. Investigation of the Migration/Proliferation Dichotomy and its Impact on Avascular Glioma Invasion. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 1, pp. 105-135. doi : 10.1051/mmnp/20127106. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127106/

[1] C. Athale, Y. Mansury, T. Deisboeck J. Theor. Biol. 2005 469 481

[2] J.P. Boon, D. Dab, R. Kapral, A. Lawniczak Phys. Rpts. 1996 55 147

[3] B.M. Caradoc-Davies. Vortex Dynamics in Bose-Einstein Condensates. Ph.D. dissertation, University of Otago, Dunedin, New Zealand (2000).

[4] B. Chopard, M. Droz. Cellular Automata Modeling of Physical Systems. Cambridge University Press (1998).

[5] A. Deutsch, S. Dormann. Cellular automaton modeling of biological pattern formation. Birkhäuser (2005).

[6] S. Fedotov, A. Iomin Phys. Rev. Let. 2007 118101 4

[7] C.W. Gardiner. Handbook of stochastic methods. Springer, Berlin (1990).

[8] A. Giese, M.A. Loo, N. Tran, D. Haskett, S.W. Coons, M.E. Berens Int. J. Cancer 1996 275 282

[9] A. Giese, R. Bjerkvig, M.E. Berens, M. Westphal J. Clin. Onc. 2003 1624 1636

[10] J. Godlewski, M. Nowicki, A. Bronisz, G. Nuovo, J. Palatini, M. De Lay, J. Van Brocklyn, M. Ostrowski, E. A. Chiocca, S. E. Lawler Mol. Cell 2010 620 32

[11] H.L.P. Harpold, E.C. Alvord, K.R. Swanson J. Neuropathol. Exp. Neurol. 2007 1 9

[12] H. Hatzikirou, D. Basanta, M. Simon, C. Schaller, A. Deutsch. ‘Go or Grow’ : the key to the emergence of invasion in tumor progression ? Mathematical Medicine and Biology (Published online July 2010), doi :10.1093/imammb/dqq01.

[13] H. Hatzikirou, L. Brusch, A. Deutsch Acta Phys. Pol. B Proc. 2010 399 416

[14] H. Hatzikirou, L. Brusch, C. Schaller, M. Simon, A. Deutsch Comput. Math. Appl. 2010 2326 2339

[15] M.A. Lewis, G. Schmitz Forma 1996 1 25

[16] Y. Mansury, M. Diggory, T. Deisboeck J. Theor. Biol. 2006 146 156

[17] K. Pham, A. Chauviere, H. Hatzikirou, X. Li, H. M. Byrne, V. Cristini, J. Lowengrub. Density-dependent quiescence in glioma invasion : instability in a simple reaction-diffusion model for the migration/proliferation dichotomy. J. Biol. Dyn. (Published online June 2011), doi :10.1080/17513758.2011.590610.

[18] R.E. Baker, M.J. Simpson Phys. Rev. E 2007

[19] A.M. Stein, M. O. Nowicki, T. Demuth, M.E. Berens, S.E. Lawler, E.A. Chiocca, L.M. Sander Appl. Optics 2007 5110 5118

[20] A.M. Stein, T. Demuth, D. Mobley, M. Berens, L.K. Sander Biophys. J. 2007 356 365

[21] D. Stockholm, R. Benchaouir, J. Picot, P. Rameau, T.M.A. Neildez, G. Landini, C. Laplace-Builhe, A. Paldi PLoS ONE 2007 1 13

[22] M. Tektonidis, H. Hatzikirou, A. Chauviere, M. Simmon, K. Schaller, A. Deutsch J. Theor. Biol. 2011 131 147

[23] C.H. Wang, J.K. Rockhill, M. Mrugala, D.L. Peacock, A. Lai, K. Jusenius, J.M. Wardlaw, T. Cloughesy, A.M. Spence, R. Rockne Cancer Res. 2009 9133 9140

Cité par Sources :