Autowaves in the Model of Infiltrative Tumour Growth with Migration-Proliferation Dichotomy
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 7 Supplement, pp. 27-38.

Voir la notice de l'article provenant de la source EDP Sciences

A mathematical model of infiltrative tumour growth is investigated taking into account transitions between two possible states of malignant cells: proliferation and migration. These transitions are considered to depend on oxygen level in a threshold manner where high oxygen concentration allows cell proliferation, while concentration below a certain critical value induces cell migration. The infiltrative tumour spreading rate dependence on model parameters is obtained. It is shown that the tumour growth rate depends on the tissue oxygen level in a threshold manner.
DOI : 10.1051/mmnp/20116703

A.V. Kolobov 1 ; V.V. Gubernov 1 ; A.A. Polezhaev 1

1 Department of Theoretical Physics, P.N. Lebedev Physical Institute, Leninskij prosp. 53, Moscow 119991, Russia
@article{MMNP_2011_6_7_Supplement_a3,
     author = {A.V. Kolobov and V.V. Gubernov and A.A. Polezhaev},
     title = {Autowaves in the {Model} of {Infiltrative} {Tumour} {Growth} with {Migration-Proliferation} {Dichotomy}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {27--38},
     publisher = {mathdoc},
     volume = {6},
     number = {7 Supplement},
     year = {2011},
     doi = {10.1051/mmnp/20116703},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116703/}
}
TY  - JOUR
AU  - A.V. Kolobov
AU  - V.V. Gubernov
AU  - A.A. Polezhaev
TI  - Autowaves in the Model of Infiltrative Tumour Growth with Migration-Proliferation Dichotomy
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 27
EP  - 38
VL  - 6
IS  - 7 Supplement
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116703/
DO  - 10.1051/mmnp/20116703
LA  - en
ID  - MMNP_2011_6_7_Supplement_a3
ER  - 
%0 Journal Article
%A A.V. Kolobov
%A V.V. Gubernov
%A A.A. Polezhaev
%T Autowaves in the Model of Infiltrative Tumour Growth with Migration-Proliferation Dichotomy
%J Mathematical modelling of natural phenomena
%D 2011
%P 27-38
%V 6
%N 7 Supplement
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116703/
%R 10.1051/mmnp/20116703
%G en
%F MMNP_2011_6_7_Supplement_a3
A.V. Kolobov; V.V. Gubernov; A.A. Polezhaev. Autowaves in the Model of Infiltrative Tumour Growth with Migration-Proliferation Dichotomy. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 7 Supplement, pp. 27-38. doi : 10.1051/mmnp/20116703. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116703/

[1] A.C. Burton Growth 1966 157 176

[2] H. Bueno, G. Ercole, A. Zumpano Nonlinearity 2005 1629 1642

[3] H.M. Byrne, M.A.J. Chaplain Math. Biosci. 1996 187 216

[4] S.K. Chintala, J.R. Rao Frontiers in Bioscience 1996 324 339

[5] Fedotov S., Mendez V. Phys. Rev. E 2002 030102

[6] Fedotov S., Iomin A. Phys. Rev. Lett. 2007 118101

[7] A. Giese, R. Bjerkvig, M.E. Berens, M. Westphal J. Clinical Oncology 2003 1624 1636

[8] H.P. Greenspan J. Theor. Biol. 1976 229 242

[9] A. Gusev, A. Polezhaev Kratkie soobscheniya po fizike FIAN 1997 85 90

[10] D. Hanahan, R.A. Weinberg Cell 2000 57 70

[11] A.L. Harris Nat. Rev. Cancer 2002 38 47

[12] Hatzikirou H., Basanta D., Simon M., Schaller K., Deutsch A. Math. Med. Biol. 2010 1 17

[13] Iomin A. Phys. Rev. E 2006 061918

[14] A.V. Kolobov, A.A. Polezhaev, G.I. Solyanyk. Stability of tumour shape in pre-angiogenic stage of growth depends on the migration capacity of cancer cells. Mathematical Modelling Computing in Biology and Medicine (Ed. V. Capasso), 2003, 603–609.

[15] A.K. Laird Br. J. Cancer 1964 490 502

[16] Lowengrub J.S., Frieboes H.B., Jin F., Y-L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini Nonlinearity 2010 1 91

[17] W. Van Saarloos Physics Reports 2003 29 222

[18] J.A. Sherratt, M.A.J. Chaplain J. Math. Biol. 2001 291 312

[19] Swansona K.R., Bridge C., Murray J.D., E.C. Alvord J. Neurolog. Sci. 2003 1 10

[20] Y. Tao, M. Chen Nonlinearity 2006 419 440

[21] R.H. Thomlinson, L.H. Gray Br. J. Cancer 1955 539 549

[22] J.P. Ward, J.R. King IMA J. Math. Appl. Med. Biol. 1997 39 69

Cité par Sources :