Simulating Kinetic Processes in Time and Space on a Lattice
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 159-197.

Voir la notice de l'article provenant de la source EDP Sciences

We have developed a chemical kinetics simulation that can be used as both an educational and research tool. The simulator is designed as an accessible, open-source project that can be run on a laptop with a student-friendly interface. The application can potentially be scaled to run in parallel for large simulations. The simulation has been successfully used in a classroom setting for teaching basic electrochemical properties. We have shown that this can be used for simulating fundamental molecular and chemical processes and even simplified models of predator–prey interactions. By giving the simulated entities spatial extent in the lattice, the particles do not interpenetrate, and clusters of particles can spatially exclude one another. Our simulation demonstrates that spatial inhomogeneity leads to different results than those that are obtained by using standard ordinary differential equation models, as previously reported.
DOI : 10.1051/mmnp/20116609

J. P. Gill 1 ; K. M. Shaw 1 ; B. L. Rountree 2 ; C. E. Kehl 1 ; H. J. Chiel 1, 3

1
2 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94550
3 Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106
@article{MMNP_2011_6_6_a8,
     author = {J. P. Gill and K. M. Shaw and B. L. Rountree and C. E. Kehl and H. J. Chiel},
     title = {Simulating {Kinetic} {Processes} in {Time} and {Space} on a {Lattice}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {159--197},
     publisher = {mathdoc},
     volume = {6},
     number = {6},
     year = {2011},
     doi = {10.1051/mmnp/20116609},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116609/}
}
TY  - JOUR
AU  - J. P. Gill
AU  - K. M. Shaw
AU  - B. L. Rountree
AU  - C. E. Kehl
AU  - H. J. Chiel
TI  - Simulating Kinetic Processes in Time and Space on a Lattice
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 159
EP  - 197
VL  - 6
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116609/
DO  - 10.1051/mmnp/20116609
LA  - en
ID  - MMNP_2011_6_6_a8
ER  - 
%0 Journal Article
%A J. P. Gill
%A K. M. Shaw
%A B. L. Rountree
%A C. E. Kehl
%A H. J. Chiel
%T Simulating Kinetic Processes in Time and Space on a Lattice
%J Mathematical modelling of natural phenomena
%D 2011
%P 159-197
%V 6
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116609/
%R 10.1051/mmnp/20116609
%G en
%F MMNP_2011_6_6_a8
J. P. Gill; K. M. Shaw; B. L. Rountree; C. E. Kehl; H. J. Chiel. Simulating Kinetic Processes in Time and Space on a Lattice. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 159-197. doi : 10.1051/mmnp/20116609. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116609/

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular biology of the cell. Garland Science, New York, 4th ed., 2002.

[2] P. Atkins, J. de Paula. Physical chemistry. W. H. Freeman, New York, 7th ed., 2002.

[3] M. Branch, S. Wright. The Nernst/Goldman equation simulator. http://www.nernstgoldman.physiology.arizona.edu/.

[4] B. R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, M. Karplus J. Comput. Chem. 2009 1545 1614

[5] H. Casanova, F. Berman, T. Bartol, E. Gokcay, T. Sejnowski, A. Birnbaum, J. Dongarra, M. Miller, M. Ellisman, M. Faerman, G. Obertelli, R. Wolski, S. Pomerantz, J. Stiles Int. J. High Perform. C. 2004 3 17

[6] P. S. di Fenizio, P. Dittrich, W. Banzhaf. Spontaneous formation of proto-cells in an universal artificial chemistry on a planar graph. In: J. Keleman, P. Sosik, editors. Advances in Artificial Life. 6th European Conference, ECAL 2001, 2001 Sep 10–14, Prague, Czech Republic. Lect. Notes Comput. Sc., 2159 (2001), 206–215.

[7] P. Dittrich, J. Ziegler, W. Banzhaf Artif. Life 2001 225 275

[8] A. Einstein Ann. Phys.-Berlin 1905 549 560

[9] B. M. Frezza. Deterministic versus stochastic chemical kinetics. http://demonstrations.wolfram.com/DeterministicVersusStochasticChemicalKinetics/.

[10] B. M. Frezza. Michaelis-Menten enzyme kinetics and the steady-state approximation. http://demonstrations.wolfram.com/MichaelisMentenEnzymeKineticsAndTheSteadyStateApproximation/.

[11] R. F. Galán Phys. Rev. E 2009 036113

[12] R. Grima, S. Schnell Essays Biochem. 2008 41 56

[13] W. S. C. Gurney, R. M. Nisbet. Ecological dynamics. Oxford Univ. Press, New York, 1998.

[14] B. Hille. Ionic channels of excitable membranes. Sinauer Associates, Sunderland, MA, 3rd ed., 2001.

[15] T. J. Hutton Artif. Life 2007 11 30

[16] D. Johnston, S. M. Wu. Foundations of cellular neurophysiology. MIT Press, Cambridge, 1994.

[17] E. R. Kandel, J. H. Schwartz, T. M. Jessell. Principles of neural science. McGraw-Hill, 4th ed., 2000.

[18] K. Kang, S. Redner Phys. Rev. A 1985 435 447

[19] Z. Konkoli. Diffusion controlled reactions, fluctuation dominated kinetics, and living cell biochemistry. In: S. B. Cooper, V. Danors, editors. Computational Models from Nature. 5th Workshop on Developments in Computational Models, DCM 2009, 2009 Jul 11, Rhodes, Greece. EPTCS, 9 (2009), 98–107.

[20] R. Kutner Phys. Lett. A 1981 239 240

[21] F. Leyvraz, S. Redner Phys. Rev. A 1992 3132 3147

[22] B. Mcmullin Artif. Life 2004 277 295

[23] P. H. Nelson, A. B. Kaiser, D. M. Bibby J. Catal. 1991 101 112

[24] A. A. Ovchinnikov, Y. B. Zeldovich Chem. Phys. 1978 215 218

[25] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, K. Schulten J. Comput. Chem. 2005 1781 1802

[26] S. Schnell, T. E. Turner Prog. Biophys. Mol. Bio. 2004 235 260

[27] H. Suzuki Aust. J. Chem. 2006 869 873

[28] K. Takahashi, N. Ishikawa, Y. Sadamoto, H. Sasamoto, S. Ohta, A. Shiozawa, F. Miyoshi, Y. Naito, Y. Nakayama, M. Tomita Bioinformatics 2003 1727 1729

[29] D. Toussaint, F. Wilczek J. Chem. Phys. 1983 2642 2647

[30] J. Trefil, H. J. Morowitz, E. Smith Am. Sci. 2009 206 213

[31] F. Varela, H. Maturana, R. Uribe Biosystems 1974 187 196

[32] E. W. Weisstein. Predator-prey equations. http://demonstrations.wolfram.com/{\penalty 0}Predator{}PreyEquations/.

[33] T. Weisstein. Michaelis-Menten enzyme kinetics. http://bioquest.org/esteem/{\penalty 0}esteem_details.php?product_id=246.

[34] T. Weisstein, R. Salinas, J. R. Jungck. Two-species model. http://bioquest.org/esteem/{\penalty 0}esteem_details.php?product_id=203.

Cité par Sources :