Segregation of Flowing Blood: Mathematical Description
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 5, pp. 281-319.

Voir la notice de l'article provenant de la source EDP Sciences

Blood rheology is completely determined by its major corpuscles which are erythrocytes, or red blood cells (RBCs). That is why understanding and correct mathematical description of RBCs behavior in blood is a critical step in modelling the blood dynamics. Various phenomena provided by RBCs such as aggregation, deformation, shear-induced diffusion and non-uniform radial distribution affect the passage of blood through the vessels. Hence, they have to be taken into account while modelling the blood dynamics. Other important blood corpuscles are platelets, which are crucial for blood clotting. RBCs strongly affect the platelet transport in blood expelling them to the vessel walls and increasing their dispersion, which has to be considered in models of clotting. In this article we give a brief review of basic modern approaches in mathematical description of these phenomena, discuss their applicability to real flow conditions and propose further pathways for developing the theory of blood flow.
DOI : 10.1051/mmnp/20116511

A. Tokarev 1 ; G. Panasenko 2 ; F. Ataullakhanov 1

1 National Research Center for Hematology, Russian Academy of Medical Sciences Novii Zykovskii proezd, 4a, Moscow, Russia, 125167
2 University Jean Monnet, 23 rue Dr. Paul Michelon, 42023 Saint-Etienne, France
@article{MMNP_2011_6_5_a10,
     author = {A. Tokarev and G. Panasenko and F. Ataullakhanov},
     title = {Segregation of {Flowing} {Blood:} {Mathematical} {Description}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {281--319},
     publisher = {mathdoc},
     volume = {6},
     number = {5},
     year = {2011},
     doi = {10.1051/mmnp/20116511},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116511/}
}
TY  - JOUR
AU  - A. Tokarev
AU  - G. Panasenko
AU  - F. Ataullakhanov
TI  - Segregation of Flowing Blood: Mathematical Description
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 281
EP  - 319
VL  - 6
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116511/
DO  - 10.1051/mmnp/20116511
LA  - en
ID  - MMNP_2011_6_5_a10
ER  - 
%0 Journal Article
%A A. Tokarev
%A G. Panasenko
%A F. Ataullakhanov
%T Segregation of Flowing Blood: Mathematical Description
%J Mathematical modelling of natural phenomena
%D 2011
%P 281-319
%V 6
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116511/
%R 10.1051/mmnp/20116511
%G en
%F MMNP_2011_6_5_a10
A. Tokarev; G. Panasenko; F. Ataullakhanov. Segregation of Flowing Blood: Mathematical Description. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 5, pp. 281-319. doi : 10.1051/mmnp/20116511. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116511/

[1] C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed. The mechanics of the circulation (russian edition). Mir, Moscow, 1981.

[2] A. M. Chernukh, P. N. Aleksandrov, O. V. Alekseev. Microcirculation. Medicina, Moscow, 1984.

[3] H. L. Goldsmith, R. Skalak Annual Review of Fluid Mechanics 1975 213 247

[4] H. L. Goldsmith, V. T. Turitto Thromb. Haemost. 1986 415 435

[5] H. L. Goldsmith Microvasc. Res. 1986 121 142

[6] A. S. Popel, P. C. Johnson Annu. Rev. Fluid Mech. 2005 43 69

[7] H. H. Lipowsky Microcirculation 2005 5 15

[8] G. R. Cokelet Biorheology 1999 343 358

[9] A. M. Quarteroni, M. Tuveri, A. Veneziani Computing and Visualization in Science 2000 163 197

[10] S. Kim, P. K. Ong, O. Yalcin, M. Intaglietta, P. C. Johnson Biorheology 2009 181 189

[11] M. Manjunatha, M. Singh Clin. Hemorheol. Microcirc. 2002 91 106

[12] M. Manjunatha, S. S. Singh, M. Singh Microvascular Research 2003 49 55

[13] A. A. Palmer, W. H. Betts Biorheology 1975 283 293

[14] M. L. Ellsworth, R. N. Pittman Am. J. Physiol. 1986 H869 H879

[15] A. R. Pries, K. Ley, M. Claassen, P. Gaehtgens Microvasc. Res. 1989 81 101

[16] R. H. Phibbs Am. J. Physiol. 1966 919 925

[17] G. J. Tangelder, H. C. Teirlinck, D. W. Slaaf, R. S. Reneman Am. J. Physiol. 1985 H318 H323

[18] B. Woldhuis, G. J. Tangelder, D. W. Slaaf, R. S. Reneman Am. J. Physiol. 1992 H1217 H1223

[19] P. A. Aarts, S. A. Van Den Broek, G. W. Prins, G. D. Kuiken, J. J. Sixma, R. M. Heethaar Arteriosclerosis 1988 819 824

[20] H. L. Goldsmith Fed. Proc. 1971 1578 1590

[21] G. Segré, A. Silberberg Nature 1961 209 210

[22] G. Segré, A. Silberberg Journal of Fluid Mechanics 1962 115 135

[23] G. Segré, A. Silberberg Journal of Fluid Mechanics 1962 136 157

[24] D. R. Oliver Nature 1962 1269 1271

[25] M. Takano, H. L. Goldsmith, S. G. Mason Journal of Colloid and lnterface Science 1968 253 267

[26] L. G. Leal Annu. Rev. Fluid Mech. 1980 435 476

[27] S. K. Wang, N. H. C. Hwang Biorheology 1992 353 377

[28] H. Brenner, P. M. Bungay Fed. Proc. 1971 1565 1577

[29] H. L. Goldsmith, S. G. Mason Journal of Colloid Science 1962 448 476

[30] C. K. W. Tam, W. A. Hyman Journal of Fluid Mechanics 1973 177 185

[31] C. Crowe, M. Sommerfield, Y. Tsuji. Multiphase flows with drops and particles. CRC Press, 1998.

[32] P. Cherukat, J. B. Mclaughlin, D. S. Dandy International Journal of Multiphase Flow 1999 15 33

[33] J.-P. Matas, J. F. Morris, E. Guazzelli Journal of Fluid Mechanics 2004 171 195

[34] L. L. Munn, M. M. Dupin Ann. Biomed. Eng 2008 534 544

[35] E. E. Michaelides Journal of Fluids Engineering 2003 209 238

[36] S. I. Rubinow, J. B. Keller Journal of Fluid Mechanics 1961 447 459

[37] R. G. Cox, H. Brenner Chemical Engineering Science 1968 147 173

[38] P. G. Saffman Journal of Fluid Mechanics 1965 385 400

[39] J. B. Mclaughlin Journal of Fluid Mechanics 1991 261 274

[40] P. Cherukat, J. B. Mclaughlin, A. L. Graham International Journal of Multiphase Flow 1994 339 353

[41] P. V. Vasseur, R. G. Cox Journal of Fluid Mechanics 1976 385 413

[42] R. G. Cox, S. K. Hsu International Journal of Multiphase Flow 1977 201 222

[43] P. Cherukat, D. R. Oliver Journal of Fluid Mechanics 1994 1 18

[44] P. W. Longest, C. Kleinstreuer Journal of Biomechanics 2003 421 430

[45] P. W. Longest, C. Kleinstreuer Journal of Biomechanical Engineering 2003 671 681

[46] P. W. Longest, C. Kleinstreuer, J. R. Buchanan Computers & Fluids 2004 577 601

[47] H. L. Goldsmith, S. G. Mason Nature 1961 1095 1096

[48] M. Abkarian, A. Viallat Soft Matter 2008 653 657

[49] C. Coulliette, C. Pozrikidis Journal of Fluid Mechanics 1998 1 28

[50] S. Mortazavi, G. Tryggvason Journal of Fluid Mechanics 2000 325 350

[51] C. Pozrikidis Ann. Biomed. Eng 2005 165 178

[52] B. Kaoui, G. Biros, C. Masbah. Why Do Red Blood Cells Have Asymmetric Shapes Even in a Symmetric Flow? Physical Review Letters, 103 (2009), No. 18, 188101(1)-188101(4).

[53] C. E. Chaffey, H. Brenner, S. G. Mason Rheologica Acta 1965 64 72

[54] C. E. Chaffey, H. Brenner, S. G. Mason Rheologica Acta 1967 100

[55] P. R. Wohl, S. I. Rubinow Journal of Fluid Mechanics 1974 185 207

[56] P. C. H. Chan, L. G. Leal Journal of Fluid Mechanics 1979 131 170

[57] W. S. J. Uijttewaal, E.-J. Nijhof, R. M. Heethaar Phys. Fluids A 1993 819 825

[58] S. D. Hudson Physics of Fluids 2003 1106 1113

[59] M. R. King, D. T. Leighton Physics of Fluids 2001 397 406

[60] M. Scott. 2005. The modeling of Blood Rheology in small vessels. University of Waterloo, Waterloo, Ontario, Canada.

[61] P. Olla Journal de Physique II 1997 1533 1540

[62] M. Faivre, M. Abkarian, K. Bickraj, H. A. Stone Biorheology 2006 147 159

[63] P. L. Blackshear, R. J. Forstrom, F. D. Dorman, G. O. Voss Fed. Proc. 1971 1600 1609

[64] C. D. Eggleton, A. S. Popel Physics of Fluids 1998 1834 1845

[65] N. Korin, A. Bransky, U. Dinnar Journal of Biomechanics 2007 2088 2095

[66] P. R. Nott, J. F. Brady Journal of Fluid Mechanics 1994 157 199

[67] J. F. Morris, J. F. Brady International Journal of Multiphase Flow 1998 105 130

[68] K. Tsubota, S. Wada, H. Kamada, Y. Kitagawa, R. Lima, T. Yamaguchi Journal of the Earth Simulator 2006 2 7

[69] S. Chen, G. D. Doolen Annu. Rev. Fluid Mech. 1998 329 364

[70] M. M. Dupin, I. Halliday, C. M. Care, L. Alboul, L. L. Munn Physical Review E. 2007 1 17

[71] L. M. Crowl, A. L. Fogelson. Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells. Commun. Numer. Meth. Engng, (2009).

[72] C. Sun, C. Migliorini, L. L. Munn Biophysical Journal 2003 208 222

[73] P. Bagchi Biophysical Journal 2007 1858 1877

[74] P. Bagchi, P. C. Johnson, A. S. Popel Transactions of the ASME 2005 1070 1080

[75] J. Zhang, P. C. Johnson, A. S. Popel Journal of Biomechanics 2008 47 55

[76] J. Zhang, P. C. Johnson, A. S. Popel Microvasc. Res. 2009 265 272

[77] S. Svetina, P. Ziherl Bioelectrochemistry 2008 84 91

[78] A. L. Fogelson Journal of Computational Physics 1984 111 134

[79] I. V. Pivkin, P. D. Richardson, G. Karniadakis PNAS 2006 17164 17169

[80] H. Miyazaki, T. Yamaguchi Biorheology 2003 265 272

[81] K. Yano, K. Tsubota, S. Wada, T. Yamaguchi. 2003. Computational mechanical simulation of the aggregation and adhesion of platelets in the blood flow. In Summer Bioengineering Conference. Sonesta Beach Resort in Key Biscayne, Florida. 0613-0614.

[82] N. Filipovic, D. Ravnic, M. Kojic, S. J. Mentzer, S. Haber, A. Tsuda Microvasc. Res. 2008 279 284

[83] D. Mori, K. Yano, K. Tsubota, T. Ishikawa, S. Wada, T. Yamaguchi Thromb. Haemost. 2008 108 115

[84] T. Almomani, H. S. Udaykumar, J. S. Marshall, K. B. Chandran Ann. Biomed. Eng 2008 905 920

[85] R. M. Miller, J. F. Morris Journal of Non-Newtonian Fluid Mechanics 2006 149 165

[86] L. G. Loitzanskii. Mechanics of Fluid and Gas. Nauka, Moscow, 1978.

[87] A. Sequeira, J. Janela. An overview of some mathematical models of blood rheology. In A Portrait of State-of-the-Art Research at the Technical University of Lisbon. M. S. Pereira, editor. Springer, 2007. pp. 65-87.

[88] A. M. Robertson, A. Sequeira, M. V. Kameneva. Hemorheology. In Hemodynamical Flows: Modeling, Analysis and Simulation (Oberwolfach Seminars). Birkhauser Basel, 2008. pp. 63-120.

[89] G. R. Cokelet. The Rheology and Tube Flow of Blood. In Handbook of Bioengineering. R. Skalak, S. Chen, editors. McGraw-Hill, New York, 1987.

[90] B. J. B. M. Wolters, M. C. M. Rutten, G. W. H. Schurink, U. Kose, J. D. Hart, F. N. V. D. Vosse Medical Engineering & Physics 2005 871 883

[91] J. Jung, A. Hassenein, R. W. Lyczkowski Ann. Biomed. Eng 2006 393 407

[92] J. Jung, R. W. Lyczkowski, C. B. Panchal, A. Hassenein Journal of Biomechanics 2006 2064 2073

[93] J. Jung, A. Hassenein Medical Engineering & Physics 2008 91 103

[94] D. Quemada, C. Berli Advances in Colloid and Interface Science 2002 51 85

[95] A. Marcinkowska-Gapinska, J. Gapinski, W. Elikowski, F. Jaroszyk, L. Kubisz Medical and Biological Engineering and Computing 2007 837 844

[96] B. Das, P. C. Johnson, A. S. Popel Biorheology 1998 69 87

[97] J. R. Buchanan, C. Kleinstreuer, J. K. Comer Computers & Fluids 2000 695 724

[98] B. Das, G. Enden, A. S. Popel Annals of Biomedical Engineering 1997 135 153

[99] A. S. Popel, G. Enden Rheologica Acta 1993 422 426

[100] C. L. Berli, D. Quemada Biorheology 2001 27 38

[101] D. Quemada The European Physical J. AP 1998 119 127

[102] D. Quemada, C. Berli Adv. Colloid Interface Sci. 2002 51 85

[103] P. Neofytou Biorheology 2004 693 714

[104] G. R. Cokelet, H. L. Goldsmith Circ. Res. 1991 1 17

[105] J. R. Buchanan, C. Kleinstreuer J. Biomech. Eng 1998 446 454

[106] S. A. Regirer. Lections on Biological Mechanics [in russian]. Izdatelstvo MGU, Moscow, 1980.

[107] M. Sharan, A. S. Popel Biorheology 2001 415 428

[108] J. H. Ware, F. Y. Sorrell, R. M. Felder Biorheology 1974 97 109

[109] B. Das, P. C. Johnson, A. S. Popel Biorheology 2000 239 258

[110] J. Perkkio, R. Keskinen Bull. Math. Biol. 1983 259 267

[111] D. Lerche. Modelling hemodynamics in small tubes (hollow fibers) considering . In Biomechanical Transport Processes. F. e. al. Mosora, editor. Plenum, New York, 1990. pp. 243-250.

[112] R. T. Carr, M. Lacoin Annals of Biomedical Engineering 2000 641 652

[113] P. Brunn International Journal of Engineering Science 1982 575 585

[114] V. K. Stokes The Physics of Fluids 1966 1709 1715

[115] A. C. Eringen Journal of Mathematics and Mechanics 1966 1 18

[116] A. Askar, A. S. Cakmak International Journal of Engineering Science 1968 583 589

[117] T. Ariman International Journal of Engineering Science 1973 905 930

[118] T. Ariman, M. A. Turk, N. D. Sylvester International Journal of Engineering Science 1974 273 293

[119] K. A. Kline Transactions of the society of rheology 1975 139 145

[120] S. C. Cowin Transactions of the society of rheology 1976 195 202

[121] H. A. Hogan, M. Henriksen Journal of Biomechanics 1989 211 218

[122] R. N. Pralhad, D. H. Schultz Mathematical Biosciences 2004 203 220

[123] G. Akay, A. Kaye International Journal of Engineering Science 1985 265 276

[124] Md. A. Ikbal, S. Chakravarty, P. K. Mandal Computers and Mathematics with Applications 2009 1328 1339

[125] D. Biswas. Blood Flow Models: A Comparative Study. Mittal Publications , 2002.

[126] C. K. Kang, A. C. Eringen Bull. Math. Biol. 1976 135 159

[127] A. S. Popel, S. A. Regirer Nauchnie trudi instituta mechaniki MGU 1970 3 20

[128] A. S. Popel, S. A. Regirer, P. I. Usick Biorheology 1974 427 437

[129] A. S. Popel Mechanika zjidkosti i gaza 1969 24

[130] A. C. Eringen. Microcontinuum Field Theories II: Fluent media. Springer-Verlag, 2001.

[131] V. A. Levtov, S. A. Regirer, N. Kh. Shadrina Sovremennie problemi biomekhaniki 1994 5 41

[132] V. L. Kolpashchikov, N. P. Migun, P. P. Prokhorenko International Journal of Engineering Science 1983 405 411

[133] A. D. J. Kirwan International Journal of Engineering Science 1986 1237 1242

[134] H. L. Goldsmith, J. C. Marlow Journal of Colloid and lnterface Science 1979 383 407

[135] V. A. Levtov, S. A. Regirer, N. Kh. Shadrina. Rheology of Blood. Medicina, Moscow, 1982.

[136] G. Ahmadi Scientia Sinica 1981 1465 1473

[137] G. Ahmadi Acta Mechanica 1982 299 317

[138] J. Jung, D. Gidaspow, I. K. Gamwo Chem. Eng. Comm. 2006 946 975

[139] E. C. Eckstein, D. G. Bailey, A. H. Shapiro Journal of Fluid Mechanics 1977 191 208

[140] D. Leighton, A. Acrivos Journal of Fluid Mechanics 1987 415 439

[141] H. Aref, S. W. Jones Phys. Fluids A 1989 470 474

[142] C. J. Koh, P. Hookham, L. G. Leal Journal of Fluid Mechanics 1994 1 32

[143] M. K. Lyon, L. G. Leal Journal of Fluid Mechanics 1998 25 56

[144] R. J. Phillips, R. C. Armstrong, R. A. Brown Phys. Fluids A 1992 30 40

[145] J. E. Butler, R. T. Bonnecaze Physics of Fluids 1999 1982 1994

[146] M. Hofer, K. Perctold Biorheology 1997 261 279

[147] M. K. Lyon, L. G. Leal Journal of Fluid Mechanics 1998 57 77

[148] J. F. Morris, F. Boulay Journal of Rheology 1999 1213 1236

[149] E. F. Grabowski, Friedman L.I., E. F. Leonard Ind. Eng. Chem. Fundamen. 1972 224 232

[150] A. B. Strong, G. D. Stubley, G. Chang, D. R. Absolom J. Biomed. Mater. Res. 1987 1039 1055

[151] G. D. Stubley, A. B. Strong, W. E. Hale, D. R. Absolom PCH PhysicoChem. Hydrodynics 1987 221 235

[152] D. M. Wootton, C. P. Markou, S. R. Hanson, D. N. Ku Ann. Biomed. Eng 2001 321 329

[153] E. N. Sorensen, G. W. Burgreen, W. R. Wagner, J. F. Antaki Ann. Biomed. Eng 1999 449 458

[154] E. N. Sorensen, G. W. Burgreen, W. R. Wagner, J. F. Antaki Ann. Biomed. Eng 1999 436 448

[155] T. David, P. G. Walker Biorheology 2002 293 298

[156] M. Anand, K. Rajagopal, K. R. Rajagopal Computational and Mathematical Methods in Medicine 2003 183 218

[157] A. L. Fogelson, R. D. Guy Math. Med. Biol. 2004 293 334

[158] N.-T. Wang, A. L. Fogelson Journal of Computational Physics 1999 649 675

[159] A. L. Fogelson SIAM J. Appl. Math. 1992 1089 1110

[160] A. Jordan, T. David, S. Homer-Vanniasinkam, A. Graham, P. Walker Biorheology 2004 641 653

[161] E. C. Eckstein, D. L. Bilsker, C. M. Waters, J. S. Kippenhan, A. W. Tilles Ann. N. Y. Acad. Sci. 1987 442 452

[162] E. C. Eckstein, F. Belgacem Biophys. J. 1991 53 69

[163] C. Yeh, A. C. Calvez, E. C. Eckstein Biophys. J. 1994 1252 1259

[164] A. L. Zydney, C. K. Colton PCH PhysicoChem. Hydrodynamics 1988 77 96

[165] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakov. Boundary Value Problems in the Mechanics of Heterogeneous Fluids, Novosibirsk, Nauka, 1983.

[166] J. Málek, J. Nečas, M. Pokyta, M. Ruzička. Weak and Measure-valued Solutions to Evolutionary DPEs. Chapman and Hall, London, 1996.

[167] G. P. Galdi, R. Rannacher, A. H. Robertson, S. Turek. Hemodynamical Flows Modeling: Analysis and Simulation. Oberwolfach Seminar, Birkhauser, Basel, Boston, Berlin, 2008.

Cité par Sources :