Asymptotic Behavior of the Solution of the Distribution Diffusion Equation for FENE Dumbbell Polymer Model
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 5, pp. 84-97.

Voir la notice de l'article provenant de la source EDP Sciences

This paper deals with the evolution Fokker-Planck-Smoluchowski configurational probability diffusion equation for the FENE dumbbell model in dilute polymer solutions. We prove the exponential convergence in time of the solution of this equation to a corresponding steady-state solution, for arbitrary velocity gradients.
DOI : 10.1051/mmnp/20116505

I. S. Ciuperca 1 ; L. I. Palade 2

1 Université de Lyon, Université Lyon 1, Institut Camille Jordan, UMR 5208 CNRS 69622 Villeurbanne, France
2 Université de Lyon, INSA de Lyon, Institut Camille Jordan UMR 5208 CNRS & Pôle de Mathématiques, 69621 Villeurbanne, France
@article{MMNP_2011_6_5_a4,
     author = {I. S. Ciuperca and L. I. Palade},
     title = {Asymptotic {Behavior} of the {Solution} of the {Distribution} {Diffusion} {Equation} for {FENE} {Dumbbell} {Polymer} {Model}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {84--97},
     publisher = {mathdoc},
     volume = {6},
     number = {5},
     year = {2011},
     doi = {10.1051/mmnp/20116505},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116505/}
}
TY  - JOUR
AU  - I. S. Ciuperca
AU  - L. I. Palade
TI  - Asymptotic Behavior of the Solution of the Distribution Diffusion Equation for FENE Dumbbell Polymer Model
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 84
EP  - 97
VL  - 6
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116505/
DO  - 10.1051/mmnp/20116505
LA  - en
ID  - MMNP_2011_6_5_a4
ER  - 
%0 Journal Article
%A I. S. Ciuperca
%A L. I. Palade
%T Asymptotic Behavior of the Solution of the Distribution Diffusion Equation for FENE Dumbbell Polymer Model
%J Mathematical modelling of natural phenomena
%D 2011
%P 84-97
%V 6
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116505/
%R 10.1051/mmnp/20116505
%G en
%F MMNP_2011_6_5_a4
I. S. Ciuperca; L. I. Palade. Asymptotic Behavior of the Solution of the Distribution Diffusion Equation for FENE Dumbbell Polymer Model. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 5, pp. 84-97. doi : 10.1051/mmnp/20116505. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116505/

[1] J. W. Barret, C. Schwab, E. Süli Math. Model. Meth. Appl. Sci. 2005 939 983

[2] R. B. Bird, R. C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids, Vol. 1: Fluid Mechanics. J. Wiley Sons, New York, 1987.

[3] R. B. Bird, R. C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory. J. Wiley Sons, New York, 1987.

[4] A. V. Busuioc, I. S. Ciuperca, D. Iftimie and L. I. Palade. The FENE dumbbell polymer model: existence and uniqueness of solutions for the momentum balance equation. Journal of Dynamics and Differential Equations, submitted, 2011.

[5] J. A. Carillo, S. Cordier, S. Mancini. A decision-making Fokker-Planck model in computational neuroscience. To appear in Journal of Mathematical Biology, 2011.

[6] L. Chupin Methods Appl. Anal. 2009 217 261

[7] I. S. Ciuperca, L. I. Palade Mathematical Models & Methods in Applied Sciences 2009 2039 2064

[8] I. S. Ciupercă, L. I. Palade Dynamics of Partial Differential Equations 2010 245 263

[9] Q. Du, C. Liu, P. Yu Multiscale Model. Simul. 2005 709 731

[10] D. Henry. Geometric Theory of semilinear parabolic equations. Lecture notes in mathematics, Vol. 840. Springer Verlag, New York, 1981.

[11] R. R. Huilgol, N. Phan-Thien. Fluid Mechanics of Viscoelasticity. Elsevier, Amsterdam, 1997.

[12] B. Jourdain, C. Le Bris, T. Lelièvre, F. Otto Arch. Rational Mech. Anal. 2006 97 148

[13] J. G. Kirkwood. Macromolecules, edited by P. L. Auer. Gordon and Breach, 1968.

[14] R. G. Larson. Constitutive Equations for Polymer Melts and Solutions. Butterworths, Boston, 1988.

[15] F. Lin, P. Zhang, Z. Zhang Commun. Math. Phys. 2008 531 553

[16] N. Masmoudi Comm. Pure Appl. Math. 2008 1685 1714

[17] F. A. Morrison. Understanding Rheology. Oxford University Press, Oxford, 2001.

[18] J. Nečas. Les méthodes directes en théorie des équations elliptiques. Masson, Paris, 1967.

[19] S. Cleja-Ţigoiu, V. Ţigoiu. Rheology and Thermodynamics, Part I - Rheology. Editura Universităţii din Bucureşti, Bucureşti, 1998.

[20] V. A. Volpert, A. I. Volpert Advances in Differential Equations 1997 811 830

[21] H. Zhang, P. Zhang Arch. Ratl. Mech. Anal. 2006 373 400

Cité par Sources :