Voir la notice de l'article provenant de la source EDP Sciences
I. S. Ciuperca 1 ; L. I. Palade 2
@article{MMNP_2011_6_5_a4, author = {I. S. Ciuperca and L. I. Palade}, title = {Asymptotic {Behavior} of the {Solution} of the {Distribution} {Diffusion} {Equation} for {FENE} {Dumbbell} {Polymer} {Model}}, journal = {Mathematical modelling of natural phenomena}, pages = {84--97}, publisher = {mathdoc}, volume = {6}, number = {5}, year = {2011}, doi = {10.1051/mmnp/20116505}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116505/} }
TY - JOUR AU - I. S. Ciuperca AU - L. I. Palade TI - Asymptotic Behavior of the Solution of the Distribution Diffusion Equation for FENE Dumbbell Polymer Model JO - Mathematical modelling of natural phenomena PY - 2011 SP - 84 EP - 97 VL - 6 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116505/ DO - 10.1051/mmnp/20116505 LA - en ID - MMNP_2011_6_5_a4 ER -
%0 Journal Article %A I. S. Ciuperca %A L. I. Palade %T Asymptotic Behavior of the Solution of the Distribution Diffusion Equation for FENE Dumbbell Polymer Model %J Mathematical modelling of natural phenomena %D 2011 %P 84-97 %V 6 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116505/ %R 10.1051/mmnp/20116505 %G en %F MMNP_2011_6_5_a4
I. S. Ciuperca; L. I. Palade. Asymptotic Behavior of the Solution of the Distribution Diffusion Equation for FENE Dumbbell Polymer Model. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 5, pp. 84-97. doi : 10.1051/mmnp/20116505. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116505/
[1] Math. Model. Meth. Appl. Sci. 2005 939 983
, ,[2] R. B. Bird, R. C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids, Vol. 1: Fluid Mechanics. J. Wiley Sons, New York, 1987.
[3] R. B. Bird, R. C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory. J. Wiley Sons, New York, 1987.
[4] A. V. Busuioc, I. S. Ciuperca, D. Iftimie and L. I. Palade. The FENE dumbbell polymer model: existence and uniqueness of solutions for the momentum balance equation. Journal of Dynamics and Differential Equations, submitted, 2011.
[5] J. A. Carillo, S. Cordier, S. Mancini. A decision-making Fokker-Planck model in computational neuroscience. To appear in Journal of Mathematical Biology, 2011.
[6] Methods Appl. Anal. 2009 217 261
[7] Mathematical Models & Methods in Applied Sciences 2009 2039 2064
,[8] Dynamics of Partial Differential Equations 2010 245 263
,[9] Multiscale Model. Simul. 2005 709 731
, ,[10] D. Henry. Geometric Theory of semilinear parabolic equations. Lecture notes in mathematics, Vol. 840. Springer Verlag, New York, 1981.
[11] R. R. Huilgol, N. Phan-Thien. Fluid Mechanics of Viscoelasticity. Elsevier, Amsterdam, 1997.
[12] Arch. Rational Mech. Anal. 2006 97 148
, , ,[13] J. G. Kirkwood. Macromolecules, edited by P. L. Auer. Gordon and Breach, 1968.
[14] R. G. Larson. Constitutive Equations for Polymer Melts and Solutions. Butterworths, Boston, 1988.
[15] Commun. Math. Phys. 2008 531 553
, ,[16] Comm. Pure Appl. Math. 2008 1685 1714
[17] F. A. Morrison. Understanding Rheology. Oxford University Press, Oxford, 2001.
[18] J. Nečas. Les méthodes directes en théorie des équations elliptiques. Masson, Paris, 1967.
[19] S. Cleja-Ţigoiu, V. Ţigoiu. Rheology and Thermodynamics, Part I - Rheology. Editura Universităţii din Bucureşti, Bucureşti, 1998.
[20] Advances in Differential Equations 1997 811 830
,[21] Arch. Ratl. Mech. Anal. 2006 373 400
,Cité par Sources :