Peristaltic Pumping of Solid Particles Immersed in a Viscoelastic Fluid
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 5, pp. 67-83.

Voir la notice de l'article provenant de la source EDP Sciences

Peristaltic pumping of fluid is a fundamental method of transport in many biological processes. In some instances, particles of appreciable size are transported along with the fluid, such as ovum transport in the oviduct or kidney stones in the ureter. In some of these biological settings, the fluid may be viscoelastic. In such a case, a nonlinear constitutive equation to describe the evolution of the viscoelastic contribution to the stress tensor must be included in the governing equations. Here we use an immersed boundary framework to study peristaltic transport of a macroscopic solid particle in a viscoelastic fluid governed by a Navier-Stokes/Oldroyd-B model. Numerical simulations of peristaltic pumping as a function of Weissenberg number are presented. We examine the spatial and temporal evolution of the polymer stress field, and also find that the viscoelasticity of the fluid does hamper the overall transport of the particle in the direction of the wave.
DOI : 10.1051/mmnp/20116504

J. Chrispell 1, 2 ; L. Fauci 1, 2

1 Department of Mathematics, Tulane University, New Orleans, Louisiana 70118, USA
2 Center for Computational Science, Tulane University, New Orleans, Louisiana 70118, USA
@article{MMNP_2011_6_5_a3,
     author = {J. Chrispell and L. Fauci},
     title = {Peristaltic {Pumping} of {Solid} {Particles} {Immersed} in a {Viscoelastic} {Fluid}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {67--83},
     publisher = {mathdoc},
     volume = {6},
     number = {5},
     year = {2011},
     doi = {10.1051/mmnp/20116504},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116504/}
}
TY  - JOUR
AU  - J. Chrispell
AU  - L. Fauci
TI  - Peristaltic Pumping of Solid Particles Immersed in a Viscoelastic Fluid
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 67
EP  - 83
VL  - 6
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116504/
DO  - 10.1051/mmnp/20116504
LA  - en
ID  - MMNP_2011_6_5_a3
ER  - 
%0 Journal Article
%A J. Chrispell
%A L. Fauci
%T Peristaltic Pumping of Solid Particles Immersed in a Viscoelastic Fluid
%J Mathematical modelling of natural phenomena
%D 2011
%P 67-83
%V 6
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116504/
%R 10.1051/mmnp/20116504
%G en
%F MMNP_2011_6_5_a3
J. Chrispell; L. Fauci. Peristaltic Pumping of Solid Particles Immersed in a Viscoelastic Fluid. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 5, pp. 67-83. doi : 10.1051/mmnp/20116504. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116504/

[1] J. Baranger, A. Machmoum Comput. Methods Appl. Mech. Engrg. 1997 39 52

[2] J. Baranger, D. Sandri Numer. Math. 1992 13 27

[3] R.B. Bird, R.C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids. Wiley-Interscience, 1987.

[4] J.R. Blake, P.G. Vann, H Winet J. Theor. Biol. 1983 145 166

[5] S. Boyarski, C. Gottschalk, E. Tanagho, P. Zimskind. Urodynamics: Hydrodynamics of the Ureter and the Renal Pelvis. Academic Press, New York, 1971.

[6] A. Brooks, T. Hughes Computer Methods in Applied Mechanics and Engineering 1982 199 259

[7] J.C. Chrispell, V.J. Ervin, E.W. Jenkins Journal of Computational and Applied Mathematics 2009 159 175

[8] K. Connington, Q. Kang, H. Viswanathan, A. Abdel-Fattah, S. Chen Phys. of Fluids 2009 053301

[9] A.W. El-Kareh, L.G. Leal Journal of Non-Newtonian Fluid Mechanics 1989 257 287

[10] O. Eytan, D. Elad Bull. Math. Biol. 1999 221 238

[11] O. Eytan, A.J. Jaffa, J. Har-Toov, E. Dalach, D. Elad Ann. Biomed. Engr. 1999 372 9

[12] L. Fauci Comp. & Fluids 1992 583 598

[13] L. Fauci, R. Dillon Annu. Rev. Fluid. Mech. 2006 371 394

[14] B.E. Griffith, C.S. Peskin Journal of Computational Physics 2005 75 105

[15] R. Guy, A. Fogelson Comput. Methods Appl. Mech. Engr. 2008 2250 2264

[16] F. H. Harlow, J. E. Welch Phys. of Fluids 1965 2182 2189

[17] E. J. Hinch Journal of Non-Newtonian Fluid Mechanics 1994 209 230

[18] T.K. Hung, T.D. Brown J. Fluid Mech 1976 77 96

[19] M. Y. Jaffrin, A. H. Shapiro Annu. Rev. Fluid Mech. 1971 13 37

[20] M. Y. Jaffrin, A. H. Shapiro, S. L. Weinberg J. Fluid Mech. 1969 799 825

[21] J. Jimenez-Lozano, M. Sen, P. Dunn Phys. Rev. E 2009 041901

[22] J. Kim, P. Moin J. Comp. Physics 1985 308 323

[23] G. Kunz, D. Beil, H. Deiniger, A. Einspanier, G. Mall, G. Leyendecker Adv. Exp. Med. Biol. 1997 267 277

[24] R.G. Larson. The Structure and Rheology of Complex Fluids. Oxford University Press, 1998.

[25] M. Li, J. Brasseur J. Fluid Mech. 1993 129 151

[26] C.Y. Lu, P.D. Olmsted, R.C. Ball Phys. Rev. Lett. 2000 642 645

[27] C.S. Peskin Acta Numerica 2002 479 517

[28] C. Pozrikidis J. Fluid Mech. 1987 180 515

[29] J.M. Rallison Journal of Non-Newtonian Fluid Mechanics 1997 61 83

[30] S. Takabatake, K. Ayukawa, A. Mori J. Fluid Mech. 1988 193 267

[31] J. Teran, L. Fauci, M. Shelley Phys. of Fluids 2008 073101

[32] J. Teran, L. Fauci, M. Shelley Phys. Rev. Letters 2010 038101

[33] B. Thomases, M. Shelley Phys. Rev. Lett. 2009 094501

Cité par Sources :