A Langevin Description for Driven Granular Gases
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 4, pp. 87-117.

Voir la notice de l'article provenant de la source EDP Sciences

The study of the fluctuations in the steady state of a heated granular system is reviewed. A Boltzmann-Langevin description can be built requiring consistency with the equations for the one- and two-particle correlation functions. From the Boltzmann-Langevin equation, Langevin equations for the total energy and the transverse velocity field are derived. The existence of a fluctuation-dissipation relation for the transverse velocity field is also studied.
DOI : 10.1051/mmnp/20116405

P. Maynar 1 ; M. I. García de Soria 1

1 Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
@article{MMNP_2011_6_4_a5,
     author = {P. Maynar and M. I. Garc{\'\i}a de Soria},
     title = {A {Langevin} {Description} for {Driven} {Granular} {Gases}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {87--117},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2011},
     doi = {10.1051/mmnp/20116405},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116405/}
}
TY  - JOUR
AU  - P. Maynar
AU  - M. I. García de Soria
TI  - A Langevin Description for Driven Granular Gases
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 87
EP  - 117
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116405/
DO  - 10.1051/mmnp/20116405
LA  - en
ID  - MMNP_2011_6_4_a5
ER  - 
%0 Journal Article
%A P. Maynar
%A M. I. García de Soria
%T A Langevin Description for Driven Granular Gases
%J Mathematical modelling of natural phenomena
%D 2011
%P 87-117
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116405/
%R 10.1051/mmnp/20116405
%G en
%F MMNP_2011_6_4_a5
P. Maynar; M. I. García de Soria. A Langevin Description for Driven Granular Gases. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 4, pp. 87-117. doi : 10.1051/mmnp/20116405. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116405/

[1] A. Baskaran, J. W. Dufty, J. J. Brey Phys. Rev. E 2008

[2] M. Bixon, R. Zwanzig Phys. Rev. 1969 267 272

[3] J. J. Brey, J. W. Dufty, M. J. Ruiz-Montero, in Granular Gas Dynamics, edited by T. Pöschel and N. Brilliantov. Springer, Berlin, 2003.

[4] J. J. Brey, M. I. García De Soria, P. Maynar Phys. Rev. E 2010

[5] J. J. Brey, M. I. García De Soria, P. Maynar EPL 2008

[6] J. J. Brey, P. Maynar, M. I. García De Soria Phys. Rev. E 2009

[7] J. J. Brey, M. I. García De Soria, P. Maynar, M. J. Ruiz-Montero Phys. Rev. E 2004

[8] J. J. Brey, M. J. Ruiz-Montero, F. Moreno Phys. Rev. E 2000 5339 5346

[9] R. Cafiero, S. Luding, H. J. Herrmann Phys. Rev. Lett. 2000 6014 6017

[10] M. H. Ernst, E. Trizac, A. Barrat J. Stat. Phys. 2006 549 586

[11] M. H. Ernst, E. Trizac, A. Barrat Europhys. Lett. 2006 56 62

[12] A. Fiege, T. Aspelmeier, A. Zippelius Phys. Rev. Lett. 2009

[13] M. I. García De Soria, P. Maynar, G. Schehr, A. Barrat, E. Trizac Phys. Rev. E 2008

[14] M. I. García De Soria, P. Maynar, E. Trizac Mol. Phys. 2009 383 392

[15] V. Garzó, J. M. Montanero Physica A 2002 336 356

[16] I. Goldhirsch, G. Zanetti Phys. Rev. Lett. 1993 1619 1622

[17] A. Goldshtein, M. Shapiro J. Fluid. Mech. 1995 75 114

[18] P. K. Haff J. Fluid. Mech. 1983 401 430

[19] C. C. Maaß, N. Isert, G. Maret, C. M. Aegerter Phys. Rev. Lett. 2008

[20] P. Maynar, M. I. García De Soria, E. Trizac EPJ ST 2009 123 139

[21] S. Mcnamara, W. R. Young Phys. Rev. E 1996 5089 5100

[22] J. M. Montanero, A. Santos Granular Matter 2000 53 64

[23] S. J. Moon, M. D. Shattuck, J. B. Swift Phys. Rev E 2001

[24] I. Pagonabarraga, E. Trizac, T. P. C. Van Noije, M. H. Ernst Phys. Rev. E 2001

[25] B. Painter, M. Dutt, R. Behringer Physica D 2003 43 68

[26] A. Prevost, D. A. Egolf, J. S. Urbach Phys. Rev. Lett. 2002

[27] A. Puglisi, V. Loreto, U. M. B. Marconi, A. Vulpiani Phys. Rev E 1999 5582 5595

[28] P. Résibois, M. de Leener. Classical Kinetic Theory of Fluids. Wiley, New York, 1977.

[29] N. G. van Kampen. Stochastic Proccesses in Physics and Chemistry. North-Holland, Amsterdam, 1992.

[30] T. P. C. Van Noije, M. H. Ernst Granular Matter 1998 57 64

[31] T. P. C. Van Noije, M. H. Ernst, E. Trizac, I. Pagonabarraga Phys. Rev. E 1999 4326 4341

[32] P. Visco, A. Puglisi, A. Barrat, F. Van Wijland, E. Trizac Eur. Phys. J. B 2006 377 387

[33] D. R. M. Williams, F. C. Mackintosh Phys. Rev. E 1996 R9 R12

Cité par Sources :