Dense Granular Poiseuille Flow
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 4, pp. 77-86.

Voir la notice de l'article provenant de la source EDP Sciences

We consider a dense granular shear flow in a two-dimensional system. Granular systems (composed of a large number of macroscopic particles) are far from equilibrium due to inelastic collisions between particles: an external driving is needed to maintain the motion of particles. Theoretical description of driven granular media is especially challenging for dense granular flows. This paper focuses on a gravity-driven dense granular Poiseuille flow in a channel. A special focus here is on the intriguing phenomenon of fluid-solid coexistence: a solid plug in the center of the system, surrounded by fluid layers. To find and analyze various flow regimes, a multi-scale approach is taken. On macro scale, granular hydrodynamics is employed. On micro scale, event-driven molecular dynamics simulations are performed. The entire phase diagram of parameters is explored, in order to determine which flow regime occurs in various regions in the parameter space.
DOI : 10.1051/mmnp/20116404

E. Khain 1

1 Department of Physics, Oakland University, Rochester MI 48309, USA
@article{MMNP_2011_6_4_a4,
     author = {E. Khain},
     title = {Dense {Granular} {Poiseuille} {Flow}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {77--86},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2011},
     doi = {10.1051/mmnp/20116404},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116404/}
}
TY  - JOUR
AU  - E. Khain
TI  - Dense Granular Poiseuille Flow
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 77
EP  - 86
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116404/
DO  - 10.1051/mmnp/20116404
LA  - en
ID  - MMNP_2011_6_4_a4
ER  - 
%0 Journal Article
%A E. Khain
%T Dense Granular Poiseuille Flow
%J Mathematical modelling of natural phenomena
%D 2011
%P 77-86
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116404/
%R 10.1051/mmnp/20116404
%G en
%F MMNP_2011_6_4_a4
E. Khain. Dense Granular Poiseuille Flow. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 4, pp. 77-86. doi : 10.1051/mmnp/20116404. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116404/

[1] P. K. Haff J. Fluid Mech. 1983 401 430

[2] J. T. Jenkins, M. W. Richman Phys. Fluids 1985 3485 94

[3] S. Chapman, T. G. Cowling. The Mathematical Theory of Non-Uniform Gases. Cambridge Univ. Press, Cambridge, 1990.

[4]

[5] I. Goldhirsch, G. Zanetti Phys. Rev. Lett. 1993 1619 1622

[6] E. Khain, B. Meerson Phys. Rev. E 2002

[7] E. Khain, B. Meerson, P. V. Sasorov Phys. Rev. E 2004

[8] A. Baskaran, J. W. Dufty, J. J. Brey Phys. Rev. E 2008

[9] I. S. Aranson, L. S. Tsimring Rev. Mod. Phys. 2006 641 692

[10] I. Goldhirsch Annu. Rev. Fluid Mech. 2003 267 293

[11] E. L. Grossman, T. Zhou, E. Ben-Naim Phys. Rev. E 1997 4200 4206

[12] S. Luding Phys. Rev. E 2001

[13] B. Meerson, T. Pöschel, Y. Bromberg Phys. Rev. Lett. 2003

[14] P. Eshuis, K. Van Der Weele, D. Van Der Meer, D. Lohse Phys. Rev. Lett. 2005

[15] L. Bocquet, W. Losert, D. Schalk, T. C. Lubensky, J. P. Gollub Phys. Rev. E 2002

[16] L. Bocquet, J. Errami, T. C. Lubensky Phys. Rev. Lett. 2002

[17] R. Garcia-Rojo, S. Luding, J. J. Brey Phys. Rev. E 2006

[18] E. Khain Phys. Rev. E 2007

[19] S. Luding Nonlinearity 2009 R101 R146

[20] E. Khain, B. Meerson Phys. Rev. E 2006

[21] M. Alam, P. Shukla, S. Luding J. Fluid Mech. 2008

[22] E. Khain Europhys. Lett. 2009

[23] M. Alam, P. R. Nott J. Fluid Mech. 1998 99 136

[24] M. Alam, S. Luding Phys. Fluids 2003 2298 2312

[25] C. H. Wang, R. Jackson, S. Sundaresan J. Fluid Mech. 1997 179 197

[26] C. H. Wang, Z. Q. Tong J. Fluid Mech. 2001 217 246

[27] C. Denniston, H. Li Phys. Rev. E 1999 3289 3292

[28] J. J. Drozd, C. Denniston Europhys. Lett. 2006

[29] J. C. Tsai, W. Losert, G. A. Voth, J. P. Gollub Phys. Rev. E 2002

[30] K. C. Vijayakumar, M. Alam Phys. Rev. E 2007

[31] V. Chikkadi, M. Alam Phys. Rev. E 2009

[32] E. D. Liss, S. L. Conway, B. J. Glasser Phys. Fluids 2002 3309 3326

[33] M. Alam, V. Chikkadi, V. K. Gupta EPJ St 2009 69 90

[34] J. J. Brey, F. Moreno, J. W. Dufty Phys. Rev. E 1996 445 456

[35] N. Sela, I. Goldhirsch J. Fluid Mech. 1998 41 74

Cité par Sources :