Hydrodynamics of Inelastic Maxwell Models
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 4, pp. 37-76.

Voir la notice de l'article provenant de la source EDP Sciences

An overview of recent results pertaining to the hydrodynamic description (both Newtonian and non-Newtonian) of granular gases described by the Boltzmann equation for inelastic Maxwell models is presented. The use of this mathematical model allows us to get exact results for different problems. First, the Navier–Stokes constitutive equations with explicit expressions for the corresponding transport coefficients are derived by applying the Chapman–Enskog method to inelastic gases. Second, the non-Newtonian rheological properties in the uniform shear flow (USF) are obtained in the steady state as well as in the transient unsteady regime. Next, an exact solution for a special class of Couette flows characterized by a uniform heat flux is worked out. This solution shares the same rheological properties as the USF and, additionally, two generalized transport coefficients associated with the heat flux vector can be identified. Finally, the problem of small spatial perturbations of the USF is analyzed with a Chapman–Enskog-like method and generalized (tensorial) transport coefficients are obtained.
DOI : 10.1051/mmnp/20116403

V. Garzó 1 ; A. Santos 1

1 Departamento de Física, Universidad de Extremadura, E-06071 Badajoz, Spain
@article{MMNP_2011_6_4_a3,
     author = {V. Garz\'o and A. Santos},
     title = {Hydrodynamics of {Inelastic} {Maxwell} {Models}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {37--76},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2011},
     doi = {10.1051/mmnp/20116403},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116403/}
}
TY  - JOUR
AU  - V. Garzó
AU  - A. Santos
TI  - Hydrodynamics of Inelastic Maxwell Models
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 37
EP  - 76
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116403/
DO  - 10.1051/mmnp/20116403
LA  - en
ID  - MMNP_2011_6_4_a3
ER  - 
%0 Journal Article
%A V. Garzó
%A A. Santos
%T Hydrodynamics of Inelastic Maxwell Models
%J Mathematical modelling of natural phenomena
%D 2011
%P 37-76
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116403/
%R 10.1051/mmnp/20116403
%G en
%F MMNP_2011_6_4_a3
V. Garzó; A. Santos. Hydrodynamics of Inelastic Maxwell Models. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 4, pp. 37-76. doi : 10.1051/mmnp/20116403. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116403/

[1] M. Abramowitz, I. A. Stegun, eds. Handbook of Mathematical Functions. Dover, New York, 1972, ch. 15.

[2] A. Astillero, A. Santos Europhys. Lett. 2007

[3] A. Baldasarri, U. M. B. Marconi, A. Puglisi Europhys. Lett. 2002 14 20

[4] A. Barrat, E. Trizac, M.H. Ernst J. Phys. A: Math. Theor. 2007 4057 4076

[5] E. Ben-Naim, P. L.Krapivsky Phys. Rev. E 2000 R5 R8

[6] E. Ben-Naim, Krapivsky P. L. Phys. Rev. E 2002

[7] E. Ben-Naim, P. L. Krapivsky Eur. Phys. J. E 2002 507 515

[8] E. Ben-Naim, P. L. Krapivsky. The inelastic Maxwell model. Granular Gas Dynamics. T. Pöschel, S. Luding, eds. Lecture Notes in Physics 624, Springer, Berlin, Germany, 2003, 65–94.

[9] G. A. Bird. Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows. Clarendon Press, Oxford, UK, 1994.

[10] A. V. Bobylev, J. A. Carrillo, I. M. Gamba J. Stat. Phys. 2000 743 773

[11] A. V. Bobylev, C. Cercignani J. Stat. Phys. 2002 547 567

[12] A. V. Bobylev, C. Cercignani J. Stat. Phys. 2003 333 375

[13] A. V. Bobylev, C. Cercignani, G. Toscani J. Stat. Phys. 2003 403 416

[14] A. V. Bobylev, I. M. Gamba J. Stat. Phys. 2006 497 516

[15] F. Bolley, J. A. Carrillo Comm. Math. Phys. 2007 287 314

[16] J. J. Brey, D. Cubero. Hydrodynamic transport coefficients of granular gases. Granular Gases. T. Pöschel, T., S. Luding, eds. Lecture Notes in Physics 564, Springer, Berlin, Germany, 2001, 59–78.

[17] J. J. Brey, J. W. Dufty, C. S. Kim, A. Santos Phys. Rev. E 1998 4638 4653

[18] J. J. Brey, J. W. Dufty, A. Santos J. Stat. Phys. 1997 1051 1066

[19] J. J. Brey, M. I. García De Soria, P. Maynar Phys. Rev. E 2010

[20] J. J. Brey, M. J. Ruiz-Montero, D. Cubero Phys. Rev. E 1996 3664 3671

[21] N. Brilliantov, T. Pöschel. Kinetic Theory of Granular Gases. Clarendon Press, Oxford, UK, 2004.

[22] N. Brilliantov, T. Pöschel Europhys. Lett. 2006 424 430

[23] R. Brito, M. H. Ernst. Anomalous velocity distributions in inelastic Maxwell gases. Advances in Condensed Matter and Statistical Mechanics. E. Korutcheva, R. Cuerno, eds. Nova Science Publishers, New York, USA, 2004, 177–202.

[24] C. S. Campbell Annu. Rev. Fluid Mech. 1990 57 92

[25] J. A. Carrillo, C. Cercignani, I. M. Gamba Phys. Rev. E 2000 7700 7707

[26] C. Cercignani J. Stat. Phys. 2001 1407 1415

[27] S. Chapman, T. G. Cowling. The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge, UK, 1970.

[28] F. Coppex, M. Droz, E. Trizac Phys. Rev. E 2005

[29] J. W. Dufty Adv. Compl. Syst. 2001 397 406

[30] J. W. Dufty, J. J. Brey. Origins of Hydrodynamics for a Granular Gas. Modellings and Numerics of Kinetic Dissipative Systems. L. Pareschi, G. Russo, G., G. Toscani, eds. Nova Science Publishers, New York, USA, 2006, 17–30.

[31] M. H. Ernst Phys. Rep. 1981 1 171

[32] M. H. Ernst, R. Brito Europhys. Lett. 2002 182 187

[33] M. H. Ernst, R. Brito J. Stat. Phys. 2002 407 432

[34] M. H. Ernst, R. Brito Phys. Rev. E 2002

[35] M. H. Ernst, E. Trizac, A. Barrat Europhys. Lett. 2006 56 62

[36] M. H. Ernst, E. Trizac, A. Barrat J. Stat. Phys. 2006 549 586

[37] S. E. Esipov, T. Pöschel J. Stat. Phys. 1997 1385 1395

[38] V. Garzó J. Stat. Phys. 2003 657 683

[39] V. Garzó Phys. Rev. E 2006

[40] V. Garzó J. Phys. A: Math. Theor. 2007 10729 10757

[41] V. Garzó. Mass transport of an impurity in a strongly sheared granular gas. J. Stat. Mech., (2007), P02012.

[42] V. Garzó, A. Astillero J. Stat. Phys. 2005 935 971

[43] V. Garzó, J. W. Dufty Phys. Rev. E 1999 5895 5911

[44] V. Garzó, J. W. Dufty Phys. Rev. E 1999 5706 5713

[45] V. Garzó, J. W. Dufty Phys. Fluids 2002 1476 1490

[46] V. Garzó, J. W. Dufty, C. M. Hrenya Phys. Rev. E 2007

[47] V. Garzó, C. M. Hrenya, J. W. Dufty Enskog theory for polydisperse granular mixtures. II. Sonine polynomial approximation. Phys. Rev. E, 76 (2007), No. 3, 031304.

[48] V. Garzó, J. M. Montanero Physica A 2002 336 356

[49] V. Garzó, A. Santos. Kinetic Theory of Gases in Shear Flows. Nonlinear Transport. Kluwer, Dordrecht, The Netherlands, 2003.

[50] V. Garzó, V., A. Santos J. Phys. A: Math. Theor. 2007 14927 14943

[51] V. Garzó, A. Santos, J. M. Montanero Physica A 2007 94 107

[52] V. Garzó, F. Vega Reyes, J. M. Montanero J. Fluid Mech. 2009 387 411

[53] I. Goldhirsch Annu. Rev. Fluid Mech. 2003 267 293

[54] A. Goldshtein, M. Shapiro J. Fluid Mech. 1995 75 114

[55] P. K. Haff J. Fluid Mech. 1983 401 430

[56] K. Kohlstedt, A. Snezhko, M. V. Sapozhnikov, I. S. Aranson, E. Ben-Naim Phys. Rev. Lett. 2005

[57] P. L. Krapivsky, E. Ben-Naim J. Phys. A: Math. Gen. 2002 L147 L152

[58] M. Lee, J. W. Dufty Phys. Rev. E 1997 1733 1745

[59] A. W. Lees, S. F. Edwards J. Phys. C 1972 1921 1928

[60] J. F. Lutsko Phys. Rev. E 2005

[61] J. F. Lutsko Phys. Rev. E 2006

[62] U. M. B. Marconi, A. Puglisi Phys. Rev. E 2002

[63] U. M. B. Marconi, A. Puglisi Phys. Rev. E 2002

[64] J. C. Maxwell Phil. Trans. Roy. Soc. (London) 1867 49 88

[65] J. M. Montanero, A. Santos Gran. Matt. 2000 53 64

[66] J. M. Montanero, A. Santos, V. Garzó Physica A 2007 75 93

[67] O. Narayan, S. Ramaswamy Phys. Rev. Lett. 2002

[68] A. Santos Physica A 2003 442 466

[69] A. Santos. A simple model kinetic equation for inelastic Maxwell particles. Rarefied Gas Dynamics: 25th International Symposium on Rarefied Gas Dynamics. A. K. Rebrov, M. S. Ivanov, eds. Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia, 2007, pp 143-148.

[70] A. Santos Cont. Mech. Therm. 2009 361 387

[71] A. Santos, M. H. Ernst Phys. Rev. E 2003

[72] A. Santos, V. Garzó. Exact non-linear transport from the Boltzmann equation. Rarefied Gas Dynamics. J. Harvey, G. Lord, eds. Oxford University Press, Oxford, UK, 1995, 13–22.

[73] A. Santos, V. Garzó. Simple shear flow in inelastic Maxwell models. J. Stat. Mech., (2007), P08021.

[74] A. Santos, V. Garzó, J. W. Dufty Phys. Rev. E 2004

[75] A. Santos, V. Garzó, F Vega Reyes Eur. Phys. J.-Spec. Top. 2009 141 156

[76] A. Santos, J. M. Montanero Gran. Matt. 2009 157 168

[77] M. Tij, E. E. Tahiri, J. M. Montanero, V. Garzó, A. Santos, J. W. Dufty J. Stat. Phys. 2001 1035 1068

[78] E. Trizac, E., P. L. Krapivsky Phys. Rev. Lett. 2003

[79] C. Truesdell, R. G. Muncaster. Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas. Academic Press, New York, USA, 1980.

[80] T. P. C. Van Noije, M. H. Ernst Gran. Matt. 1998 57 64

[81] F. Vega Reyes, V. Garzó, A. Santos Phys. Rev. E 2011

[82] F. Vega Reyes, A. Santos, V. Garzó Phys. Rev. Lett. 2010

[83] F. Vega Reyes, J. S. Urbach J. Fluid Mech. 2009 279 293

Cité par Sources :