Role of Molecular Chaos in Granular Fluctuating Hydrodynamics
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 4, pp. 2-18.

Voir la notice de l'article provenant de la source EDP Sciences

We perform a numerical study of the fluctuations of the rescaled hydrodynamic transverse velocity field during the cooling state of a homogeneous granular gas. We are interested in the role of Molecular Chaos for the amplitude of the hydrodynamic noise and its relaxation in time. For this purpose we compare the results of Molecular Dynamics (MD, deterministic dynamics) with those from Direct Simulation Monte Carlo (DSMC, random process), where Molecular Chaos can be directly controlled. It is seen that the large time decay of the fluctuation’s autocorrelation is always dictated by the viscosity coefficient predicted by granular hydrodynamics, independently of the numerical scheme (MD or DSMC). On the other side, the noise amplitude in Molecular Dynamics, which is known to violate the equilibrium Fluctuation-Dissipation relation, is not always accurately reproduced in a DSMC scheme. The agreement between the two models improves if the probability of recollision (controlling Molecular Chaos) is reduced by increasing the number of virtual particles per cells in the DSMC. This result suggests that DSMC is not necessarily more efficient than MD, if the real number of particles is small (~103 ± 104) and if one is interested in accurately reproduce fluctuations. An open question remains about the small-times behavior of the autocorrelation function in the DSMC, which in MD and in kinetic theory predictions is not a straight exponential.
DOI : 10.1051/mmnp/20116401

G. Costantini 1 ; A. Puglisi 1

1 CNR-ISC and Dipartimento di Fisica, Università Sapienza - p.le A. Moro 2, 00185, Roma, Italy
@article{MMNP_2011_6_4_a1,
     author = {G. Costantini and A. Puglisi},
     title = {Role of {Molecular} {Chaos} in {Granular} {Fluctuating} {Hydrodynamics}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {2--18},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2011},
     doi = {10.1051/mmnp/20116401},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116401/}
}
TY  - JOUR
AU  - G. Costantini
AU  - A. Puglisi
TI  - Role of Molecular Chaos in Granular Fluctuating Hydrodynamics
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 2
EP  - 18
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116401/
DO  - 10.1051/mmnp/20116401
LA  - en
ID  - MMNP_2011_6_4_a1
ER  - 
%0 Journal Article
%A G. Costantini
%A A. Puglisi
%T Role of Molecular Chaos in Granular Fluctuating Hydrodynamics
%J Mathematical modelling of natural phenomena
%D 2011
%P 2-18
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116401/
%R 10.1051/mmnp/20116401
%G en
%F MMNP_2011_6_4_a1
G. Costantini; A. Puglisi. Role of Molecular Chaos in Granular Fluctuating Hydrodynamics. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 4, pp. 2-18. doi : 10.1051/mmnp/20116401. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116401/

[1] A. Barrat, V. Loreto, A. Puglisi Physica A 2004 513 523

[2] G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford, 1994.

[3] J. J. Brey, M. I. Garcia De Soria, P. Maynar Europhys. Lett. 2008

[4] J. J. Brey, J. W. Dufty, C. S. Kim, A. Santos Phys. Rev. E 1998 4638 4653

[5] J. J. Brey, P. Maynar, M. I. Garcia De Soria Phys. Rev. E 2009

[6] J. J. Brey, M. J. Ruiz-Montero Phys. Rev. E 2004

[7] J. J. Brey, M. J. Ruiz-Montero, F. Moreno Phys. Fluids 1008 2976 2982

[8] J. J. Brey, M. J. Ruiz-Montero, F. Moreno Phys. Rev. E 2004

[9] J.J. Brey, M.I.G. De Soria, P. Maynar, M.J. Ruiz-Montero Phys. Rev. E 2004

[10] J.J. Brey, M.J. Ruiz-Montero Granular Matter 2007 53 59

[11] G. Costantini, A. Puglisi Phys. Rev. E 2010

[12] G. Costantini, A. Puglisi, U. Marini Bettolo Marconi Phys. Rev. E 2007

[13] G. Costantini, A. Puglisi, U. Marini Bettolo Marconi J. Stat. Mech. 2008

[14] J. W. Dufty, J. J. Brey J. Stat. Phys. 2002 433 448

[15] J. Eggers Phys. Rev. Lett. 1999 5322 5325

[16] K. Feitosa, N. Menon Phys. Rev. Lett. 2002

[17] A. L. Garcia, M. Malek Mansour, G. C. Lie, M. Mareschal, E. Clementi Phys. Rev. A 1987 4348 4355

[18] I. Goldhirsch Chaos 1999 659 672

[19] I. Goldhirsch, G. Zanetti Phys. Rev. Lett. 1993 1619 1622

[20] R. Kubo, M. Toda, N. Hashitsume. Statistical physics II: Nonequilibrium stastical mechanics. Springer, Berlin, 1991.

[21] L. D. Landau, E. M. Lifchitz. Physique Statistique. Éditions MIR, Moscow, 1967.

[22] J. F. Lutsko Phys. Rev. Lett. 1996 2225 2228

[23] J. F. Lutsko Phys. Rev. E 2001

[24] M. Mansour Malek, A. L. Garcia, G. C. Lie, E. Clementi Phys. Rev. Lett. 1987 874 877

[25] U. Marini Bettolo Marconi, A. Puglisi Phys. Rev. E 2002

[26] U. Marini Bettolo Marconi, A. Puglisi, L. Rondoni, A. Vulpiani Phys. Rep. 2008 111 195

[27] P. Maynar, M. I. G. De Soria, E. Trizac Eur. Phys. J. Special Topics 2009 123 139

[28] R. Pagnani, U. Marini Bettolo Marconi, A. Puglisi Phys. Rev. E 2002

[29] T. Pöschel, N. Brilliantov, editors. Granular Gas Dynamics. Lecture Notes in Physics 624. Springer, Berlin, 2003.

[30] T. Pöschel, S. Luding, editors.Granular Gases. Lecture Notes in Physics 564. Springer, Berlin, 2001.

[31] A. Puglisi, A. Baldassarri, V. Loreto Physical Review E 2002

[32] A. Puglisi, A. Baldassarri, A. Vulpiani J. Stat. Mech. 2007

[33] A. Sarracino, D. Villamaina, G. Costantini, A. Puglisi. Granular brownian motion. J. Stat. Mech., (2010) P04013.

[34] A. Sarracino, D. Villamaina, G. Gradenigo, A. Puglisi Europhys. Lett. 2010

[35] T. C. P. Van Noije, M. H. Ernst, R. Brito, J. A. G. Orza Phys. Rev. Lett. 1007 411 414

[36] D. Villamaina, A. Puglisi, A. Vulpiani. The fluctuation-dissipation relation in sub-diffusive systems: the case of granular single-file diffusion. J. Stat. Mech., (2008), L10001.

[37] P. Visco, A. Puglisi, A. Barrat, F. Van Wijland, E. Trizac Eur. Phys. J. B 2006 377 387

Cité par Sources :