Application of a Higher Order Discontinuous Galerkin
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 3, pp. 237-263.

Voir la notice de l'article provenant de la source EDP Sciences

We discuss the issues of implementation of a higher order discontinuous Galerkin (DG) scheme for aerodynamics computations. In recent years a DG method has intensively been studied at Central Aerohydrodynamic Institute (TsAGI) where a computational code has been designed for numerical solution of the 3-D Euler and Navier-Stokes equations. Our discussion is mainly based on the results of the DG study conducted in TsAGI in collaboration with the NUMECA International. The capacity of a DG scheme to tackle challenging computational problems is demonstrated and its potential advantages over FV schemes widely used in modern computational aerodynamics are highlighted.
DOI : 10.1051/mmnp/20116310

A. V. Wolkov 1 ; Ch. Hirsch 2 ; N. B. Petrovskaya 3

1 Central Aerohydrodynamic Institute, Zhukovsky, Moscow Region, 140180, Russia
2 Vrije Universiteit Brussel, Belgium
3 University of Birmingham, B15 2TT, Birmingham, UK
@article{MMNP_2011_6_3_a10,
     author = {A. V. Wolkov and Ch. Hirsch and N. B. Petrovskaya},
     title = {Application of a {Higher} {Order} {Discontinuous} {Galerkin}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {237--263},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2011},
     doi = {10.1051/mmnp/20116310},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116310/}
}
TY  - JOUR
AU  - A. V. Wolkov
AU  - Ch. Hirsch
AU  - N. B. Petrovskaya
TI  - Application of a Higher Order Discontinuous Galerkin
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 237
EP  - 263
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116310/
DO  - 10.1051/mmnp/20116310
LA  - en
ID  - MMNP_2011_6_3_a10
ER  - 
%0 Journal Article
%A A. V. Wolkov
%A Ch. Hirsch
%A N. B. Petrovskaya
%T Application of a Higher Order Discontinuous Galerkin
%J Mathematical modelling of natural phenomena
%D 2011
%P 237-263
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116310/
%R 10.1051/mmnp/20116310
%G en
%F MMNP_2011_6_3_a10
A. V. Wolkov; Ch. Hirsch; N. B. Petrovskaya. Application of a Higher Order Discontinuous Galerkin. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 3, pp. 237-263. doi : 10.1051/mmnp/20116310. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116310/

[1] J. D. Anderson, Jr. Fundamentals of aerodynamics. McGraw-Hill, New York, 1991.

[2] R. K. Agarwal, D. W. Halt Int. J. Num.Meth. Fluids 1999 121 147

[3] T. J. Barth Lecture Notes in Comput. Sci. Engrg. 1998 195 284

[4] T. Barth, P. Frederickson. Higher-order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA 90-0013, 1990.

[5] G. E. Barter, D. L. Darmofal. Shock capturing with high-order,PDE-based artificial viscosity. AIAA paper 2007-3823, 2007.

[6] F. Bassi, A. Crivellini, D. A. Di Pietro, S. Rebay. A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows. in Proceedings of ECCOMAS CFD 2006, P. Wesseling, E. Onate and J. Periaux (Eds), 2006

[7] F. Bassi, S. Rebay Int. J. Numer. Meth. Fluids 2002 197 207

[8] A. Burbeau, P. Sagaut, Ch.-H. Bruneau J.Comput.Phys. 2001 111 150

[9] J. C. Butcher. Numerical methods for ordinary differential equations. John Wiley Sons, 2003.

[10] E. Casoni, J. Peraire, A. Huerta Computational Methods in Applied Sciences 2009 307 325

[11] B. Cockburn Lecture Notes in Comput. Sci. Engrg. 1999 69 224

[12] B. Cockburn, G. E. Karniadakis, C.-W. Shu Lecture Notes in Comput. Sci. Engrg. 2000 3 50

[13] B. Cockburn, C.-W. Shu SIAM. J. Numer. Anal. 1998 2440 2463

[14] B. Cockburn, C.-W. Shu J. Comput. Phys. 1998 199 224

[15] P. H. Cook, M. A. McDonald, M. C. P. Firmin. Aerofoil RAE 2822 – pressure distribution, and boundary layer and wake measurements. AGARD-AR-138.

[16] D. L. Darmofal, R. Haimes. Towards the next generation in CFD. AIAA 2005-0087, 2005.

[17] M. Delanaye, A. Patel, B. Leonard, Ch. Hirsch. Automatic unstructured hexahedral grid generation and flow solution. in Proceedings of ECCOMAS CFD-2001, Swansea, Wales, UK, 2001.

[18] V. Dolejší, M. Feistauer, C. Schwab Mathematics and Computers in Simulation 2003 333 346

[19] M. M. Enayet, M. M. Gibson, A. M. K. P. Taylor, M. Yianneskis Int J. Heat and Fluid Flow 1982 213 219

[20] B. Engquist, S. Osher Math. Comp. 1981 321 352

[21] C. Hirsch. Numerical computation of internal and external flows. vol.2, John Wiley Sons, 1990.

[22] H. Hoteit et al. New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes. INRIA report No. 4491, INRIA Rennes, France, 2002.

[23] F. Q. Hu, M. Y. Hussaini, J. Manthey. Low-dissipation and -dispersion Runge-Kutta schemes for computational acoustics. NASA Technical Report, 1994.

[24] D. S. Kershaw, M. K. Prasad, M. J. Shaw, J. L. Milovich Comput. Meth. Appl. Mech. Engrg. 1998 81 116

[25] L. Krivodonova J. Comput. Phys. 2007 276 296

[26] L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon, J. E. Flaherty Appl. Num. Math. 2004 323 338

[27] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov. Mathematical aspects of numerical solution of hyperbolic systems. Monographs and Surveys in Pure and Applied Mathematics, 188, Chapman and Hall/CRC, Boca Raton, Florida, 2001.

[28] E. M. Lee-Rausch, P. G. Buning, D. Mavriplis, J. H. Morrison, M. A. Park, S. M. Rivers, C. L. Rumsey. CFD sensitivity analysis of a Drag Prediction Workshop wing/body transport configuration. AIAA 2003-3400, 2003.

[29] R. J. LeVeque. Numerical methods for conservation laws. Birkhäuser Verlag, Basel, Switzerland, 1992.

[30] D. W. Levy, T. Zickuhr, J. Vassberg, S. Agrawal, R. A. Wahls, S. Pirzadeh, M. J. Hemsh J. Aircraft 2003 875 882

[31] R. B. Lowrier. Compact higher-order numerical methods for hyperbolic conservation laws. PhD thesis, The University of Michigan, 1996.

[32] H. Luo, J. D. Baum, R. Löhner J. Comput. Phys. 2007 686 713

[33] H. Luo, J. D. Baum, R. Löhner AIAA Journal 2008 635 652

[34] A. A. Martynov, S. Yu. Medvedev. A robust method of anisotropic grid generation. In:Grid generation: Theory and Applications, Computing Centre RAS, Moscow, (2002), 266-275.

[35] D. J. Mavriplis. Unstructured mesh discretizations and solvers for computational aerodynamics. AIAA 2007-3955, 2007.

[36] C. R. Nastase, D. J. Mavriplis. Discontinuous Galerkin methods using an hp-multigrid solver for inviscid compressible flows on three-dimensional unstructured meshes. AIAA-Paper 2006-107, 2006.

[37] P.-O. Persson, J. Peraire. Sub-cell shock capturing for discontinuous Galerkin method. AIAA paper 2006-112, 2006.

[38] N. B. Petrovskaya, A. V. Wolkov Int. J. Comput. Methods 2007 367 382

[39] N. B. Petrovskaya Commun. Numer. Meth. Engng. 2010 1721 1735

[40] N. B. Petrovskaya CMES: Computer Modeling in Engineering & Sciences 2008 69 84

[41] N. B. Petrovskaya, A. V. Wolkov, S. V. Lyapunov Appl. Math. Mod. 2008 826 835

[42] J. Qiu, C.-W. Shu J. Comput. Phys. 2003 115 135

[43] C.-W. Shu, S. Osher J. Comput. Phys. 1988 439 471

[44] P. R. Spalart, S. R. Allmaras La Recherche Aérospatiale 1994 5 21

[45] Y. Sun, Z. J. Wang. Evaluation of discontinuous Galerkin and spectral volume methods for conservation laws on unstructured grids, AIAA 2003-0253, 2003.

[46] C. K. W. Tam, J. C. Webb J. Comput. Phys. 1993 262 281

[47] J. J. W. van der Vegt, H. van der Ven. Space – time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flow. 33rd Computational Fluid Dynamics Course ‘Novel methods for solving convection dominated systems’, the von Karman Institute, Rhode-St-Genese, Belgium, March 24–28, 2003.

[48] V. Venkatakrishnan, S. Allmaras, D. Kamenetskii, F. Johnson. Higher order schemes for the compressible Navier-Stokes equations. AIAA 2003-3987, 2003.

[49] A. V. Wolkov. Design and implementation of higher order schemes for 3-D computational aerodynamics problems. Habilitation Thesis, Central Aerohydrodynamic Institute (TsAGI), Moscow, 2010.

[50] A. V. Wolkov J. Comput. Mathem. and Mathem. Phys. 2010 495 508

[51] A. Wolkov, Ch. Hirsch, B. Leonard. Discontinuous Galerkin method on unstructured hexahedral grids for the 3D Euler and Navier-Stokes equations. AIAA 2007-4078, 2007.

[52] A. Wolkov, Ch. Hirsch, B. Leonard. Discontinuous Galerkin method on unstructured hexahedral grids. AIAA 2009-177, 2009.

[53] A. V. Wolkov, N. B. Petrovskaya Comput. Phys. Commun. 2010 1186 1194

[54] M. Dumbser J. Comput. Phys. 2008 4330 4353

Cité par Sources :