Observations Regarding Algorithms Required for Robust CFD Codes
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 3, pp. 2-27.

Voir la notice de l'article provenant de la source EDP Sciences

Over the last three decades Computational Fluid Dynamics (CFD) has gradually joined the wind tunnel and flight test as a primary flow analysis tool for aerodynamic designers. CFD has had its most favorable impact on the aerodynamic design of the high-speed cruise configuration of a transport. This success has raised expectations among aerodynamicists that the applicability of CFD can be extended to the full flight envelope. However, the complex nature of the flows and geometries involved places substantially increased demands on the solution methodology and resources required. Currently most simulations involve Reynolds-Averaged Navier-Stokes (RANS) codes although Large Eddy Simulation (LES) and Detached Eddy Suimulation (DES) codes are occasionally used for component analysis or theoretical studies. Despite simplified underlying assumptions, current RANS turbulence models have been spectacularly successful for analyzing attached, transonic flows. Whether or not these same models are applicable to complex flows with smooth surface separation is an open question. A prerequisite for answering this question is absolute confidence that the CFD codes employed reliably solve the continuous equations involved. Too often, failure to agree with experiment is mistakenly ascribed to the turbulence model rather than inadequate numerics. Grid convergence in three dimensions is rarely achieved. Even residual convergence on a given grid is often inadequate. This paper discusses issues involved in residual and especially grid convergence.
DOI : 10.1051/mmnp/20116301

F. T. Johnson 1 ; D. S. Kamenetskiy 2 ; R. G. Melvin 2 ; V. Venkatakrishnan 2 ; L. B. Wigton 2 ; D. P. Young 2 ; S. R. Allmaras 2 ; J. E. Bussoletti 2 ; C. L. Hilmes 2

1 Contractor to The Boeing Company through YourEncore
2 The Boeing Company, PO Box 3707, Seattle, Washington 98124-2207, USA
@article{MMNP_2011_6_3_a1,
     author = {F. T. Johnson and D. S. Kamenetskiy and R. G. Melvin and V. Venkatakrishnan and L. B. Wigton and D. P. Young and S. R. Allmaras and J. E. Bussoletti and C. L. Hilmes},
     title = {Observations {Regarding} {Algorithms} {Required} for {Robust} {CFD} {Codes}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {2--27},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2011},
     doi = {10.1051/mmnp/20116301},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116301/}
}
TY  - JOUR
AU  - F. T. Johnson
AU  - D. S. Kamenetskiy
AU  - R. G. Melvin
AU  - V. Venkatakrishnan
AU  - L. B. Wigton
AU  - D. P. Young
AU  - S. R. Allmaras
AU  - J. E. Bussoletti
AU  - C. L. Hilmes
TI  - Observations Regarding Algorithms Required for Robust CFD Codes
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 2
EP  - 27
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116301/
DO  - 10.1051/mmnp/20116301
LA  - en
ID  - MMNP_2011_6_3_a1
ER  - 
%0 Journal Article
%A F. T. Johnson
%A D. S. Kamenetskiy
%A R. G. Melvin
%A V. Venkatakrishnan
%A L. B. Wigton
%A D. P. Young
%A S. R. Allmaras
%A J. E. Bussoletti
%A C. L. Hilmes
%T Observations Regarding Algorithms Required for Robust CFD Codes
%J Mathematical modelling of natural phenomena
%D 2011
%P 2-27
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116301/
%R 10.1051/mmnp/20116301
%G en
%F MMNP_2011_6_3_a1
F. T. Johnson; D. S. Kamenetskiy; R. G. Melvin; V. Venkatakrishnan; L. B. Wigton; D. P. Young; S. R. Allmaras; J. E. Bussoletti; C. L. Hilmes. Observations Regarding Algorithms Required for Robust CFD Codes. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 3, pp. 2-27. doi : 10.1051/mmnp/20116301. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116301/

[1] S. R. Allmaras, J. E. Bussoletti, C. L. Hilmes, F. T. Johnson, R. G. Melvin, E. N. Tinoco, V. Venkatakrishnan, L. B. Wigton, D. P. Young. Algorithm issues and challenges associated with the development of robust CFD codes. Giuseppe Buttazzo, Aldo Frediani, Variational Analysis and Aerospace Engineering. New York, Springer, 33 (2009), 1–19.

[2] M. B. Bieterman, J. E. Bussoletti, C. L. Hilmes, F. T. Johnson, R. G. Melvin, D. P. Young Computer Methods in Applied Mechanics and Engineering 1992 225 249

[3] L. Demkowicz. Computing with hp-adaptive finite elements, Vol. 1: One and two dimensional elliptic and Maxwell problems. Chapman and Hall/CRC Applied Mathematics, 2006.

[4] B. Diskin, J. L. Thomas. Accuracy of gradient reconstruction on grids with high aspect ratio. NIA Report No.2008-12, December, 2008.

[5] T. J. R. Hughes, A. Brooks. A multi-dimensional upwind scheme with no crosswind diffusion. Finite Element Methods for Convection-Dominated Flows (ed. T.J.R. Hughes) AMD 34, New York, ASME (1979), 19–35.

[6] F. T. Johnson, E. N. Tinoco, J. N. Yu Computers & Fluids 2005 1115 1151

[7] D. J. Mavriplis. Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes. AIAA Paper 2003–3986.

[8] T. A. Oliver. A high order, adaptive, discontinuous Galerkin finite element method for the Reynolds-averaged Navier-Stokes equations. Ph. D. Thesis, M.I.T., (2008).

[9] N. B. Petrovskaya CMES: Computer Modeling in Engineering & Sciences 2008 69 84

[10] N. A Pierce, M. B. Giles J. Comp Phys. 2004 769 794

[11] P. R. Spalart, S. R. Allmaras La Recherche Ae’rospatiale 1994 5 21

[12] J. C. Vassberg, E. N. Tinoco, M. Mani, B. Rider, T. Zickhur, D. W. Levy, O. P. Brodersen, B. Eisfeld, S. Crippa, R. A. Wahls, J. H. Morrison, D. J. Mavriplis, M. Murayama. Summary of the fourth AIAA CFD Drag Prediction Workshop. 28th AIAA Applied Aerodynamics Conference, 28 June – 1 July, 2010, Chicago, IAIAA Paper 2010-4547.

[13] D. A. Venditti, D. L. Darmofal J. Comp Phys. 2003 22 46

[14] V. Venkatakrishnan, S. R. Allmaras, F. T. Johnson, D. S. Kamenetskii. Higher order schemes for the compressible Navier-Stokes equations. 16th AIAA Computational Fluid Dynamics Conference. Orlando, Florida, June 23-26, 2003, AIAA Paper 2003-3987.

[15] D. P. Young, R. G. Melvin, M. B. Bieterman, F. T. Johnson, S. S. Samant, J.E. Bussoletti J. Comp Phys. 1991 1 66

Cité par Sources :